Câu hỏi:

05/02/2021 19,688

Trong không gian với hệ tọa độ Oxyz, cho điểm M (2;1;1). Viết phương trình mặt phẳng (P) đi qua M và cắt ba tia Ox, Oy, Oz lần lượt tại các điểm A, B, C khác gốc O sao cho thể tích khối tứ diện OABC nhỏ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Gọi A (a;0;0), B (0;b;0), C (0;0;c), do A, B, C thuộc ba tia Ox, Oy, Oz nên a, b, c > 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Phương trình tham số của . Gọi M = d (P).

Khi đó M d nên M (1+t;-t;2+t) ; M (P) nên 2(1 + t) – (- t) – 2 (2 + t) + 1 = 0 ó t = 1.

Vậy đường thẳng d cắt mặt phẳng (P) tại M (2;-1;3).

Gọi  lần lượt là vectơ chỉ phương của d và vectơ pháp tuyến của mặt phẳng (P).

Khi đó một vectơ chỉ phương của đường thẳng cần tìm là .

Vậy phương trình đường thẳng cần tìm là 

Lời giải

Chọn B

Ta có VTCP của đường thẳng d là: ud2;1;3

VTPT của mặt phẳng (P) là: n(P)1;-1;-1

Vì dPu=ud;n(P)=2;5;-3

Δ có vectơ chỉ phương   u=2;5;-3và đi qua A (1;1;-2) nên có phương trình:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP