Câu hỏi:

05/02/2021 7,101

Có bao nhiêu mặt cầu (S) có tâm thuộc đường thẳng :x-32=y-1-1=z-1-2 đồng thời tiếp xúc với hai mặt phẳng (α1): 2x+2y+z-6=0 và (α2): x-2y+2z=0

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Phương trình tham số của đường thẳng Δ: 

Gọi tâm I Δ => I (3+2t;1-t;1-2t)

Vì mặt cầu (S) đồng thời tiếp xúc với hai mặt phẳng (α1)(α2) nên ta có

Do đó có vô số mặt cầu thỏa yêu cầu đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Phương trình tham số của . Gọi M = d (P).

Khi đó M d nên M (1+t;-t;2+t) ; M (P) nên 2(1 + t) – (- t) – 2 (2 + t) + 1 = 0 ó t = 1.

Vậy đường thẳng d cắt mặt phẳng (P) tại M (2;-1;3).

Gọi  lần lượt là vectơ chỉ phương của d và vectơ pháp tuyến của mặt phẳng (P).

Khi đó một vectơ chỉ phương của đường thẳng cần tìm là .

Vậy phương trình đường thẳng cần tìm là 

Lời giải

Chọn B

Ta có VTCP của đường thẳng d là: ud2;1;3

VTPT của mặt phẳng (P) là: n(P)1;-1;-1

Vì dPu=ud;n(P)=2;5;-3

Δ có vectơ chỉ phương   u=2;5;-3và đi qua A (1;1;-2) nên có phương trình:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP