Câu hỏi:
12/07/2024 1,604Cho hàm số y = x2 + 2x – 3.
a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
x |
– 3 |
– 2 |
– 1 |
0 |
1 |
y |
? |
? |
? |
? |
? |
b) Vẽ các điểm A(– 3; 0), B(– 2; – 3), C(– 1; – 4), D(0; – 3), E(1; 0) của đồ thị hàm số y = x2 + 2x – 3 trong mặt phẳng tọa độ Oxy.
c) Vẽ đường cong đi qua 5 điểm A, B, C, D, E. Đường cong đó là đường parabol và cũng chính là đồ thị hàm số y = x2 + 2x – 3 (Hình 11).
d) Cho biết tọa độ của điểm thấp nhất và phương trình trục đối xứng của parabol đó. Đồ thị hàm số đó quay bề lõm lên trên hay xuống dưới?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
a) Ta có: y = x2 + 2x – 3.
Với x = – 3 thì y = (– 3)2 + 2 . (– 3) – 3 = 0.
Với x = – 2 thì y = (– 2)2 + 2 . (– 2) – 3 = – 3.
Với x = – 1 thì y = (– 1)2 + 2 . (– 1) – 3 = – 4.
Với x = 0 thì y = 02 + 2 . 0 – 3 = – 3.
Với x = 1 thì y = 12 + 2 . 1 – 3 = 0.
Vậy ta hoàn thành bảng như sau:
x |
– 3 |
– 2 |
– 1 |
0 |
1 |
y |
0 |
– 3 |
– 4 |
– 3 |
0 |
b) Ta vẽ các điểm lên mặt phẳng tọa độ như sau:
c) Đường cong cần vẽ có dạng:
d) Tọa độ điểm thấp nhất của parabol trên là (– 1; – 4).
Phương trình trục đối xứng của parabol là: x = – 1.
Đồ thị hàm số trên quay bề lõm hướng lên trên.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Khi du lịch đến thành phố St.Louis (Mỹ), ta sẽ thấy một cái cổng lớn có hình parabol hướng bề lõm xuống dưới, đó là cổng Arch. Giả sử ta lập một hệ tọa độ Oxy sao cho một chân cổng đi qua gốc O như Hình 16 (x và y tính bằng mét), chân kia của cổng có vị trí tọa độ (162; 0). Biết một điểm M trên cổng có tọa độ là (10; 43). Tính chiều cao của cổng (tính từ điểm cao nhất trên cổng xuống mặt đất), làm tròn kết quả đến hàng đơn vị.
Câu 2:
Vẽ đồ thị mỗi hàm số bậc hai sau:
a) y = x2 – 4x – 3;
b) y = x2 + 2x + 1;
c) y = – x2 – 2.
Câu 3:
Lập bảng biến thiên của mỗi hàm số sau:
a) y = x2 – 3x + 4;
b) y = – 2x2 + 5.
Câu 4:
Trong các hàm số sau, hàm số nào là hàm số bậc hai? Với những hàm số bậc hai đó, xác định a, b, c lần lượt là hệ số của x2, hệ số của x và hệ số tự do.
a) y = – 3x2;
b) y = 2x(x2 – 6x + 1);
c) y = 4x(2x – 5).
Câu 5:
Vẽ đồ thị của mỗi hàm số sau:
a) y = 2x2 – 6x + 4;
b) y = – 3x2 – 6x – 3.
Câu 6:
Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau:
a) y = 5x2 + 4x – 1;
b) y = – 2x2 + 8x + 6.
Câu 7:
a) Quan sát đồ thị hàm số bậc hai y = x2 + 2x – 3 trong Hình 11. Xác định khoảng đồng biến, khoảng nghịch biến của hàm số và lập bảng biến thiên của hàm số đó.
b) Quan sát đồ thị hàm số bậc hai y = – x2 + 2x + 3 trong Hình 12. Xác định khoảng đồng biến, khoảng nghịch biến của hàm số và lập bảng biến thiên của hàm số đó.
về câu hỏi!