Câu hỏi:

12/07/2024 13,467

Vẽ đồ thị mỗi hàm số bậc hai sau:

a) y = x2 – 4x – 3;

b) y = x2 + 2x + 1;

c) y = – x2 – 2.

Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) y = x2 – 4x – 3

Ta có: a = 1, b = – 4, c = – 3, ∆ = (– 4)2 – 4 . 1 . (– 3) = 28.

- Tọa độ đỉnh I(2; – 7).

- Trục đối xứng x = 2.

- Giao điểm của parabol với trục tung là A(0; – 3).

- Giao điểm của parabol với trục hoành là B(27; 0) và C(2+7; 0).

- Điểm đối xứng với điểm A(0; – 3) qua trục đối xứng x = 2 là D(4; – 3).

- Do a > 0 nên bề lõm của đồ thị hướng lên trên.

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số y = x2 – 4x – 3 như hình dưới.

Vẽ đồ thị mỗi hàm số bậc hai sau:  a) y = x2 – 4x – 3; b) y = x2 + 2x + 1; c) y = – x2 – 2 (ảnh 1)

b) y = x2 + 2x + 1

Ta có: a = 1, b = 2, c = 1, ∆ = 22 – 4 . 1 . 1 = 0.

- Tọa độ đỉnh I(– 1; 0).

- Trục đối xứng x = – 1.

- Giao điểm của parabol với trục tung là A(0; 1).

- Giao điểm của parabol với trục hoành là chính là đỉnh I. 

- Điểm đối xứng với điểm A(0; 1) qua trục đối xứng x = – 1 là B(– 2; 0).

- Lấy điểm C(1; 4) thuộc đồ thị hàm số, điểm đối xứng của C qua trục đối xứng x = – 1 là D(– 3; 4).

- Do a > 0 nên bề lõm của đồ thị hướng lên trên.

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số y = x2 + 2x + 1 như hình dưới.

 

Vẽ đồ thị mỗi hàm số bậc hai sau:  a) y = x2 – 4x – 3; b) y = x2 + 2x + 1; c) y = – x2 – 2 (ảnh 2)

c) y = – x2 – 2

Ta có:  a = – 1, b = 0, c = – 2, ∆ = 02 – 4 . (– 1) . (– 2) = – 8.

- Tọa độ đỉnh I(0; – 2).

- Trục đối xứng x = 0 chính là trục tung.

- Giao điểm của parabol với trục tung là đỉnh của parabol.

- Parabol không có giao điểm với trục hoành.

- Khi x = 1 thì y = – 3 nên đồ thị hàm số đi qua điểm A(1; – 3). Điểm đối xứng với A qua trục tung là B(– 1; – 3).

- Khi x = 2 thì y = – 6 nên đồ thị hàm số đi qua điểm F(2; – 6). Điểm đối xứng với điểm F qua trục tung là G(– 2; – 6).

- Do a < 0 nên bề lõm của đồ thị hướng xuống dưới.

 Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số y = – x2 – 2 như hình dưới.

Vẽ đồ thị mỗi hàm số bậc hai sau:  a) y = x2 – 4x – 3; b) y = x2 + 2x + 1; c) y = – x2 – 2 (ảnh 3)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khi du lịch đến thành phố St.Louis (Mỹ), ta sẽ thấy một cái cổng lớn có hình parabol hướng bề lõm xuống dưới, đó là cổng Arch. Giả sử ta lập một hệ tọa độ Oxy sao cho một chân cổng đi qua gốc O như Hình 16 (x và y tính bằng mét), chân kia của cổng có vị trí tọa độ (162; 0). Biết một điểm M trên cổng có tọa độ là (10; 43). Tính chiều cao của cổng (tính từ điểm cao nhất trên cổng xuống mặt đất), làm tròn kết quả đến hàng đơn vị.

Khi du lịch đến thành phố St.Louis (Mỹ), ta sẽ thấy một cái cổng lớn có hình parabol hướng bề lõm xuống dưới (ảnh 1)

Xem đáp án » 12/07/2024 22,485

Câu 2:

Vẽ đồ thị của mỗi hàm số sau:

a) y = 2x2 – 6x + 4;

b) y = – 3x2 – 6x – 3.

Xem đáp án » 12/07/2024 9,516

Câu 3:

Trong các hàm số sau, hàm số nào là hàm số bậc hai? Với những hàm số bậc hai đó, xác định a, b, c lần lượt là hệ số của x2, hệ số của x và hệ số tự do.

a) y = – 3x2;

b) y = 2x(x2 – 6x + 1);

c) y = 4x(2x – 5).

Xem đáp án » 12/07/2024 8,038

Câu 4:

Xác định parabol y = ax2 + bx + 4 trong mỗi trường hợp sau:

a) Đi qua điểm M(1; 12) và N(– 3; 4);

b) Có đỉnh là I(– 3; – 5).

Xem đáp án » 12/07/2024 6,474

Câu 5:

Lập bảng biến thiên của mỗi hàm số sau:

a) y = x2 – 3x + 4;

b) y = – 2x2 + 5.

Xem đáp án » 12/07/2024 6,362

Câu 6:

Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau:

a) y = 5x2 + 4x – 1;

b) y = – 2x2 + 8x + 6.

Xem đáp án » 12/07/2024 5,568
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua