Câu hỏi:

12/07/2024 4,526

Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau:

a) y = 5x2 + 4x – 1;

b) y = – 2x2 + 8x + 6.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) y = 5x2 + 4x – 1

Ta có: a = 5 > 0, b = 4, b2a=42.5=25.

Vậy hàm số đã cho nghịch biến trên khoảng ;25 và đồng biến trên khoảng 25;+.

b) y = – 2x2 + 8x + 6

Ta có: a = – 2 < 0, b = 8, b2a=82.2=2.

Vậy hàm số đã cho đồng biến trên khoảng (– ; 2) và nghịch biến trên khoảng (2; + ).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khi du lịch đến thành phố St.Louis (Mỹ), ta sẽ thấy một cái cổng lớn có hình parabol hướng bề lõm xuống dưới, đó là cổng Arch. Giả sử ta lập một hệ tọa độ Oxy sao cho một chân cổng đi qua gốc O như Hình 16 (x và y tính bằng mét), chân kia của cổng có vị trí tọa độ (162; 0). Biết một điểm M trên cổng có tọa độ là (10; 43). Tính chiều cao của cổng (tính từ điểm cao nhất trên cổng xuống mặt đất), làm tròn kết quả đến hàng đơn vị.

Khi du lịch đến thành phố St.Louis (Mỹ), ta sẽ thấy một cái cổng lớn có hình parabol hướng bề lõm xuống dưới (ảnh 1)

Xem đáp án » 12/07/2024 14,228

Câu 2:

Vẽ đồ thị mỗi hàm số bậc hai sau:

a) y = x2 – 4x – 3;

b) y = x2 + 2x + 1;

c) y = – x2 – 2.

Xem đáp án » 12/07/2024 8,445

Câu 3:

Vẽ đồ thị của mỗi hàm số sau:

a) y = 2x2 – 6x + 4;

b) y = – 3x2 – 6x – 3.

Xem đáp án » 12/07/2024 7,017

Câu 4:

Trong các hàm số sau, hàm số nào là hàm số bậc hai? Với những hàm số bậc hai đó, xác định a, b, c lần lượt là hệ số của x2, hệ số của x và hệ số tự do.

a) y = – 3x2;

b) y = 2x(x2 – 6x + 1);

c) y = 4x(2x – 5).

Xem đáp án » 12/07/2024 6,235

Câu 5:

Lập bảng biến thiên của mỗi hàm số sau:

a) y = x2 – 3x + 4;

b) y = – 2x2 + 5.

Xem đáp án » 12/07/2024 5,447

Câu 6:

Xác định parabol y = ax2 + bx + 4 trong mỗi trường hợp sau:

a) Đi qua điểm M(1; 12) và N(– 3; 4);

b) Có đỉnh là I(– 3; – 5).

Xem đáp án » 12/07/2024 4,490

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store