Quan sát đồ thị hàm số bậc hai y = ax2 + bx + c ở Hình 37a và Hình 37b rồi nêu:
a) Dấu của hệ số a;
b) Tọa độ đỉnh và trục đối xứng;
c) Khoảng đồng biến;
d) Khoảng nghịch biến;
e) Khoảng giá trị x mà y > 0;
g) Khoảng giá trị x mà y ≤ 0.

Quan sát đồ thị hàm số bậc hai y = ax2 + bx + c ở Hình 37a và Hình 37b rồi nêu:
a) Dấu của hệ số a;
b) Tọa độ đỉnh và trục đối xứng;
c) Khoảng đồng biến;
d) Khoảng nghịch biến;
e) Khoảng giá trị x mà y > 0;
g) Khoảng giá trị x mà y ≤ 0.
Câu hỏi trong đề: Bài tập cuối chương III có đáp án !!
Quảng cáo
Trả lời:
* Hình 37a: Quan sát đồ thị ta thấy:
a) Bề lõm của đồ thị hướng lên trên nên hệ số a > 0 hay hệ số a mang dấu “+”.
b) Tọa độ đỉnh I(1; – 1), trục đối xứng x = 1.
c) Do hệ số a > 0 nên hàm số đồng biến trên khoảng (1; + ∞).
d) Hàm số nghịch biến trên khoảng (– ∞; 1).
e) Phần parabol nằm phía trên trục hoành tương ứng với các khoảng (– ∞; 0) và (2; + ∞) nên hàm số y > 0 trên các khoảng giá trị của x là (– ∞; 0) ∪ (2; + ∞).
g) Phần parabol phía dưới trục hoành tương ứng với khoảng (0; 2) nên hàm số y < 0 trên (0; 2). Vậy khoảng giá trị của x mà y ≤ 0 là đoạn [0; 2].
* Hình 37b: Quan sát đồ thị ta thấy,
a) Bề lõm của đồ thị hướng xuống dưới nên a < 0 hay hệ số a mang dấu “–”.
b) Tọa độ đỉnh I(1; 4), trục đối xứng x = 1.
c) Do hệ số a < 0 nên hàm số đồng biến trên khoảng (– ∞; 1).
d) Hàm số nghịch biến trên khoảng (1; +∞).
e) Phần parabol nằm phía trên trục hoành tương ứng với khoảng (– 1; 3) nên khoảng giá trị của x là (– 1; 3) thì y > 0.
g) Phần parabol nằm phía dưới trục hoành tương ứng với các khoảng (– ∞; – 1) và (3; + ∞) nên khoảng giá trị của x để y ≤ 0 là (– ∞; – 1] ∪ [3; + ∞).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số ki-lô-mét đường dây điện từ vị trí A đến vị trí S là x (km) (x > 0).
Khi đó trên hình vẽ ta có: SA = x km, AB = 4 km, BC = 1 km.
Ta thấy AB = SA + SB, suy ra SB = AB – SA = 4 – x (km). (do SB > 0 nên 4 – x > 0 hay x < 4)
Lại có tam giác SBC vuông tại B nên theo định lý Pythagore ta có:
SC2 = BC2 + BS2 = 12 + (4 – x)2 = 1 + 16 – 8x + x2 = x2 – 8x + 17
Suy ra: SC = (km)
Vì tiền công thiết kế mỗi ki-lô-mét đường dây từ A đến S là 3 triệu đồng nên số tiền để thiết kế toàn bộ đường dây từ A đến S là: 3x (triệu đồng).
Tiền công thiết kế mỗi ki-lô-mét đường dây từ S đến C là 5 triệu đồng nên số tiền để thiết kế toàn bộ đường dây từ S đến C là: (triệu đồng).
Tổng số tiền công thiết kế toàn bộ đường dây từ A đến S và từ S đến C là 16 triệu đồng nên ta có phương trình: .
Ta cần giải phương trình (1).
Ta có (1) (2).
Trước hết ta giải bất phương trình: 16 – 3x > 0 ⇔ x < .
Mà 0 < x < 4 nên điều kiện của phương trình (1) là 0 < x < 4.
Bình phương hai vế của (2) ta được: 25.(x2 – 8x + 17) = (16 – 3x)2
⇔ 25x2 – 200x + 425 = 256 – 96x + 9x2
⇔ 16x2 – 104x + 169 = 0
⇔ x = 3,25 (thỏa mãn điều kiện).
Do đó số ki-lô-mét đường dây từ vị trí A đến S là 3,25 km.
Số ki-lô-mét đường dây từ vị trí S đến C là: (km).
Vậy tổng số ki-lô-mét đường dây đã thiết kế là 3,25 + 1,25 = 4,5 (km).
Lời giải
a) 2x2 + 3x + 1 ≥ 0
Tam thức bậc hai 2x2 + 3x + 1 có ∆ = 32 – 4 . 2 . 1 = 1 > 0 nên tam thức này có hai nghiệm x1 = – 1, x2 = và có hệ số a = 2 > 0.
Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức 2x2 + 3x + 1 không âm là .
Vậy tập nghiệm của bất phương trình 2x2 + 3x + 1 là .
b) – 3x2 + x + 1 > 0
Tam thức bậc hai – 3x2 + x + 1 có ∆ = 12 – 4 . (– 3) . 1 = 13 > 0 nên tam thức này có hai nghiệm và hệ số a = – 3 < 0.
Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức – 3x2 + x + 1 mang dấu “+” là .
Vậy tập nghiệm của bất phương trình – 3x2 + x + 1 là .
c) 4x2 + 4x + 1 ≥ 0
Tam thức bậc hai 4x2 + 4x + 1 có ∆ = 42 – 4 . 4 . 1 = 0 nên tam thức này có nghiệm kép là x = và hệ số a = 4 > 0.
Sử dụng định lý về dấu của tam thức bậc hai, ta thấy 4x2 + 4x + 1 > 0 với mọi và 4x2 + 4x + 1 = 0 tại x = .
Do đó bất phương trình đã cho có vô số nghiệm.
Vậy tập nghiệm của bất phương trình là .
d) – 16x2 + 8x – 1 < 0
Tam thức bậc hai – 16x2 + 8x – 1 < 0 có ∆ = 82 – 4 . (– 16) . (– 1) = 0 nên tam thức có nghiệm kép là x = và hệ số a = – 16 < 0.
Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức – 16x2 + 8x – 1 mang dấu “–” là .
Vậy tập nghiệm của bất phương trình – 16x2 + 8x – 1 là .
e) 2x2 + x + 3 < 0
Tam thức bậc hai 2x2 + x + 3 có ∆ = 12 – 4 . 2 . 3 = – 23 < 0 và hệ số a = 2 > 0.
Sử dụng định lý về dấu của tam thức bậc hai, ta thấy 2x2 + x + 3 > 0 (cùng dấu với a) với mọi .
Vậy bất phương trình 2x2 + x + 3 < 0 vô nghiệm.
g) – 3x2 + 4x – 5 < 0
Tam thức bậc hai – 3x2 + 4x – 5 có ∆ = 42 – 4 . (– 3) . (– 5) = – 44 < 0 và hệ số a = – 3.
Sử dụng định lý về dấu của tam thức bậc hai, ta thấy – 3x2 + 4x – 5 < 0 (cùng dấu với a) với mọi .
Vậy tập nghiệm của bất phương trình – 3x2 + 4x – 5 < 0 là .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.