Câu hỏi:
12/07/2024 8,035Vẽ đồ thị của mỗi hàm số sau:
a) y = x2 – 3x – 4;
b) y = x2 + 2x + 1;
c) y = – x2 + 2x – 2.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
a) y = x2 – 3x – 4
Ta có: hệ số a = 1 > 0, b = – 3, c = – 4, ∆ = (– 3)2 – 4 . 1 . (– 4) = 25 > 0.
- Parabol có bề lõm hướng lên trên.
- Tọa độ đỉnh I .
- Trục đối xứng .
- Giao của parabol với trục tung là A(0; – 4).
- Giao với trục hoành tại các điểm B(– 1; 0) và C(4; 0).
- Điểm đối xứng với điểm A(0; – 4) qua trục đối xứng là điểm D(3; – 4).
Vẽ đường cong đi qua các điểm trên ta được đồ thị của hàm số y = x2 – 3x – 4 như hình dưới.
b) y = x2 + 2x + 1
Ta có hệ số a = 1 > 0, b = 2, c = 1, ∆ = 22 – 4 . 1 . 1 = 0.
- Parabol có bề lõm hướng lên trên.
- Tọa độ đỉnh I(– 1; 0).
- Trục đối xứng x = – 1.
- Giao của parabol với trục tung A(0; 1).
- Giao của parabol với trục hoành chính là đỉnh I(– 1; 0).
- Điểm đối xứng với điểm A(0; 1) qua trục đối xứng x = – 1 là điểm B(– 2; 1).
Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số y = x2 + 2x + 1 như hình dưới.
c) y = – x2 + 2x – 2
Ta có hệ số a = – 1 < 0, b = 2, c = – 2 và ∆ = 22 – 4 . (– 1) . (– 2) = – 4.
- Đồ thị hàm số có bề lõm hướng xuống dưới.
- Tọa độ đỉnh I(1; – 1).
- Trục đối xứng x = 1.
- Giao của parabol với trục tung là A(0; – 2). Điểm đối xứng với A qua trục đối xứng x = 1 là B(2; – 2).
- Parabol không cắt trục hoành.
- Lấy điểm C(3; – 5) thuộc đồ thị hàm số, ta có điểm đối xứng với điểm C qua trục x = 1 là điểm D(– 1; – 5).
Vẽ đồ thị đi qua các điểm trên ta được đồ thị hàm số y = – x2 + 2x – 2 như hình vẽ dưới.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một kĩ sư thiết kế đường dây điện từ vị trí A đến vị trí S và từ vị trí S đến vị trí C trên cù lao như Hình 38. Tiền công thiết kế mỗi ki-lô-mét đường dây từ A đến S và từ S đến C lần lượt là 3 triệu đồng và 5 triệu đồng. Biết tổng số tiền công là 16 triệu đồng. Tính tổng số ki-lô-mét đường dây điện đã thiết kế.
Câu 2:
Giải các bất phương trình sau:
a) 2x2 + 3x + 1 ≥ 0;
b) – 3x2 + x + 1 > 0;
c) 4x2 + 4x + 1 ≥ 0;
d) – 16x2 + 8x – 1 < 0;
e) 2x2 + x + 3 < 0;
g) – 3x2 + 4x – 5 < 0.
Câu 3:
Một nhà cung cấp dịch vụ Internet đưa ra hai gói khuyến mại cho người dùng như sau:
Gói A: Giá cước 190 000 đồng/tháng.
Nếu trả tiền cước ngay 6 tháng thì sẽ được tặng thêm 1 tháng.
Nếu trả tiền cước ngay 12 tháng thì sẽ được tặng thêm 2 tháng.
Gói B: Giá cước 189 000 đồng/tháng.
Nếu trả tiền cước ngay 7 tháng thì số tiền phải trả cho 7 tháng đó là 1 134 000 đồng.
Nếu trả tiền cước ngay 15 tháng thì số tiền phải trả cho 15 tháng đó là 2 268 000 đồng.
Giả sử số tháng sử dụng Internet là x (x nguyên dương).
a) Hãy lập các hàm số thể hiện số tiền phải trả ít nhất theo mỗi gói A, B nếu thời gian dùng không quá 15 tháng.
b) Nếu gia đình bạn Minh dùng 15 tháng thì nên chọn gói nào?
Câu 4:
Quan sát đồ thị hàm số bậc hai y = ax2 + bx + c ở Hình 37a và Hình 37b rồi nêu:
a) Dấu của hệ số a;
b) Tọa độ đỉnh và trục đối xứng;
c) Khoảng đồng biến;
d) Khoảng nghịch biến;
e) Khoảng giá trị x mà y > 0;
g) Khoảng giá trị x mà y ≤ 0.
Câu 5:
Lập bảng xét dấu của mỗi tam thức bậc hai sau:
a) f(x) = – 3x2 + 4x – 1;
b) f(x) = x2 – x – 12;
c) f(x) = 16x2 + 24x + 9.
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
28 câu Trắc nghiệm Mệnh đề có đáp án
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
80 câu trắc nghiệm Vectơ cơ bản (P1)
về câu hỏi!