Câu hỏi:

12/07/2024 8,122

Giải các bất phương trình sau:

a) 2x2 + 3x + 1 ≥ 0;

b) – 3x2 + x + 1 > 0;

c) 4x2 + 4x + 1 ≥ 0;

d) – 16x2  + 8x – 1 < 0;

e) 2x2 + x + 3 < 0;

g) – 3x2 + 4x – 5 < 0.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) 2x2 + 3x + 1 ≥ 0

Tam thức bậc hai 2x2 + 3x + 1 có ∆ = 32 – 4 . 2 . 1 = 1 > 0 nên tam thức này có hai nghiệm x1 = – 1, x2 = 12  và có hệ số a = 2 > 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức 2x2 + 3x + 1 không âm là ;112;+ .

Vậy tập nghiệm của bất phương trình 2x2 + 3x + 1 là ;112;+ .

b) – 3x2 + x + 1 > 0

Tam thức bậc hai – 3x2 + x + 1 có ∆ = 12 – 4 . (– 3) . 1 = 13 > 0 nên tam thức này có hai nghiệm x1=1136,x2=1+136  và hệ số a = – 3 < 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức – 3x2 + x + 1 mang dấu “+” là 1136;1+136 .

Vậy tập nghiệm của bất phương trình – 3x2 + x + 1 là 1136;1+136 .

c) 4x2 + 4x + 1 ≥ 0

Tam thức bậc hai 4x2 + 4x + 1 có ∆ = 42 – 4 . 4 . 1 = 0 nên tam thức này có nghiệm kép là x = 12  và hệ số a = 4 > 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy 4x2 + 4x + 1 > 0 với mọi x\12  và 4x2 + 4x + 1 = 0 tại x = 12 .

Do đó bất phương trình đã cho có vô số nghiệm.

Vậy tập nghiệm của bất phương trình là .

d) – 16x2  + 8x – 1 < 0

Tam thức bậc hai – 16x2 + 8x – 1 < 0 có ∆ = 82 – 4 . (– 16) . (– 1) = 0 nên tam thức có nghiệm kép là x = 14  và hệ số a = – 16 < 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức – 16x2 + 8x – 1 mang dấu “–” là \14 .

Vậy tập nghiệm của bất phương trình – 16x2 + 8x – 1 là \14 .

e) 2x2 + x + 3 < 0

Tam thức bậc hai 2x2 + x + 3 có ∆ = 12 – 4 . 2 . 3 = – 23 < 0 và hệ số a = 2 > 0.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy 2x2 + x + 3 > 0 (cùng dấu với a) với mọi x .

Vậy bất phương trình 2x2 + x + 3 < 0 vô nghiệm.

g) – 3x2 + 4x – 5 < 0

Tam thức bậc hai – 3x2 + 4x – 5 có ∆ = 42 – 4 . (– 3) . (– 5) = – 44 < 0 và hệ số a = – 3.

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy – 3x2 + 4x – 5 < 0 (cùng dấu với a) với mọi x .

Vậy tập nghiệm của bất phương trình – 3x2 + 4x – 5 < 0 là .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một kĩ sư thiết kế đường dây điện từ vị trí A đến vị trí S và từ vị trí S đến vị trí C trên cù lao như Hình 38. Tiền công thiết kế mỗi ki-lô-mét đường dây từ A đến S và từ S đến C lần lượt là 3 triệu đồng và 5 triệu đồng. Biết tổng số tiền công là 16 triệu đồng. Tính tổng số ki-lô-mét đường dây điện đã thiết kế.

Một kĩ sư thiết kế đường dây điện từ vị trí A đến vị trí S và từ vị trí S đến vị trí C trên cù lao như Hình 38 (ảnh 1)

Xem đáp án » 12/07/2024 16,154

Câu 2:

Một nhà cung cấp dịch vụ Internet đưa ra hai gói khuyến mại cho người dùng như sau:

Gói A: Giá cước 190 000 đồng/tháng.

Nếu trả tiền cước ngay 6 tháng thì sẽ được tặng thêm 1 tháng.

Nếu trả tiền cước ngay 12 tháng thì sẽ được tặng thêm 2 tháng.

Gói B: Giá cước 189 000 đồng/tháng.

Nếu trả tiền cước ngay 7 tháng thì số tiền phải trả cho 7 tháng đó là 1 134 000 đồng.

Nếu trả tiền cước ngay 15 tháng thì số tiền phải trả cho 15 tháng đó là 2 268 000 đồng.

Giả sử số tháng sử dụng Internet là x (x nguyên dương).

a) Hãy lập các hàm số thể hiện số tiền phải trả ít nhất theo mỗi gói A, B nếu thời gian dùng không quá 15 tháng.

b) Nếu gia đình bạn Minh dùng 15 tháng thì nên chọn gói nào?

Xem đáp án » 12/07/2024 6,195

Câu 3:

Vẽ đồ thị của mỗi hàm số sau:

a) y = x2 – 3x – 4;

b) y = x2 + 2x + 1;

c) y = – x2 + 2x – 2.

Xem đáp án » 12/07/2024 5,985

Câu 4:

Lập bảng xét dấu của mỗi tam thức bậc hai sau:

a) f(x) = – 3x2 + 4x – 1;

b) f(x) = x2 – x – 12;

c) f(x) = 16x2 + 24x + 9.

Xem đáp án » 12/07/2024 1,142

Câu 5:

Giải các phương trình sau:

a) x+2=x ;

b) 2x2+3x2=x2+x+6 ;

c) 2x2+3x1=x+3 .

Xem đáp án » 12/07/2024 1,056

Câu 6:

Quan sát đồ thị hàm số bậc hai y = ax2 + bx + c ở Hình 37a và Hình 37b rồi nêu:

a) Dấu của hệ số a;

b) Tọa độ đỉnh và trục đối xứng;

c) Khoảng đồng biến;

d) Khoảng nghịch biến;

e) Khoảng giá trị x mà y > 0;

g) Khoảng giá trị x mà y ≤ 0.

Quan sát đồ thị hàm số bậc hai y = ax2 + bx + c ở Hình 37a và Hình 37b rồi nêu (ảnh 1)

Xem đáp án » 12/07/2024 995

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store