Câu hỏi:
12/07/2024 15,790Một kĩ sư thiết kế đường dây điện từ vị trí A đến vị trí S và từ vị trí S đến vị trí C trên cù lao như Hình 38. Tiền công thiết kế mỗi ki-lô-mét đường dây từ A đến S và từ S đến C lần lượt là 3 triệu đồng và 5 triệu đồng. Biết tổng số tiền công là 16 triệu đồng. Tính tổng số ki-lô-mét đường dây điện đã thiết kế.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Gọi số ki-lô-mét đường dây điện từ vị trí A đến vị trí S là x (km) (x > 0).
Khi đó trên hình vẽ ta có: SA = x km, AB = 4 km, BC = 1 km.
Ta thấy AB = SA + SB, suy ra SB = AB – SA = 4 – x (km). (do SB > 0 nên 4 – x > 0 hay x < 4)
Lại có tam giác SBC vuông tại B nên theo định lý Pythagore ta có:
SC2 = BC2 + BS2 = 12 + (4 – x)2 = 1 + 16 – 8x + x2 = x2 – 8x + 17
Suy ra: SC = (km)
Vì tiền công thiết kế mỗi ki-lô-mét đường dây từ A đến S là 3 triệu đồng nên số tiền để thiết kế toàn bộ đường dây từ A đến S là: 3x (triệu đồng).
Tiền công thiết kế mỗi ki-lô-mét đường dây từ S đến C là 5 triệu đồng nên số tiền để thiết kế toàn bộ đường dây từ S đến C là: (triệu đồng).
Tổng số tiền công thiết kế toàn bộ đường dây từ A đến S và từ S đến C là 16 triệu đồng nên ta có phương trình: .
Ta cần giải phương trình (1).
Ta có (1) (2).
Trước hết ta giải bất phương trình: 16 – 3x > 0 ⇔ x < .
Mà 0 < x < 4 nên điều kiện của phương trình (1) là 0 < x < 4.
Bình phương hai vế của (2) ta được: 25.(x2 – 8x + 17) = (16 – 3x)2
⇔ 25x2 – 200x + 425 = 256 – 96x + 9x2
⇔ 16x2 – 104x + 169 = 0
⇔ x = 3,25 (thỏa mãn điều kiện).
Do đó số ki-lô-mét đường dây từ vị trí A đến S là 3,25 km.
Số ki-lô-mét đường dây từ vị trí S đến C là: (km).
Vậy tổng số ki-lô-mét đường dây đã thiết kế là 3,25 + 1,25 = 4,5 (km).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giải các bất phương trình sau:
a) 2x2 + 3x + 1 ≥ 0;
b) – 3x2 + x + 1 > 0;
c) 4x2 + 4x + 1 ≥ 0;
d) – 16x2 + 8x – 1 < 0;
e) 2x2 + x + 3 < 0;
g) – 3x2 + 4x – 5 < 0.
Câu 2:
Một nhà cung cấp dịch vụ Internet đưa ra hai gói khuyến mại cho người dùng như sau:
Gói A: Giá cước 190 000 đồng/tháng.
Nếu trả tiền cước ngay 6 tháng thì sẽ được tặng thêm 1 tháng.
Nếu trả tiền cước ngay 12 tháng thì sẽ được tặng thêm 2 tháng.
Gói B: Giá cước 189 000 đồng/tháng.
Nếu trả tiền cước ngay 7 tháng thì số tiền phải trả cho 7 tháng đó là 1 134 000 đồng.
Nếu trả tiền cước ngay 15 tháng thì số tiền phải trả cho 15 tháng đó là 2 268 000 đồng.
Giả sử số tháng sử dụng Internet là x (x nguyên dương).
a) Hãy lập các hàm số thể hiện số tiền phải trả ít nhất theo mỗi gói A, B nếu thời gian dùng không quá 15 tháng.
b) Nếu gia đình bạn Minh dùng 15 tháng thì nên chọn gói nào?
Câu 3:
Vẽ đồ thị của mỗi hàm số sau:
a) y = x2 – 3x – 4;
b) y = x2 + 2x + 1;
c) y = – x2 + 2x – 2.
Câu 5:
Lập bảng xét dấu của mỗi tam thức bậc hai sau:
a) f(x) = – 3x2 + 4x – 1;
b) f(x) = x2 – x – 12;
c) f(x) = 16x2 + 24x + 9.
Câu 6:
Quan sát đồ thị hàm số bậc hai y = ax2 + bx + c ở Hình 37a và Hình 37b rồi nêu:
a) Dấu của hệ số a;
b) Tọa độ đỉnh và trục đối xứng;
c) Khoảng đồng biến;
d) Khoảng nghịch biến;
e) Khoảng giá trị x mà y > 0;
g) Khoảng giá trị x mà y ≤ 0.
về câu hỏi!