Câu hỏi:
13/07/2024 11,606
Từ trên nóc của một tòa nhà cao 18,5 m, bạn Nam quan sát một cái cây cách tòa nhà 30 m và dùng giác kế đo được góc lệch giữa phương quan sát gốc cây và phương nằm ngang là 34°, góc lệch giữa phương quan sát ngọn cây và phương nằm ngang là 24°. Biết chiều cao của chân giác kế là 1,5 m. Chiều cao của cái cây là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Từ trên nóc của một tòa nhà cao 18,5 m, bạn Nam quan sát một cái cây cách tòa nhà 30 m và dùng giác kế đo được góc lệch giữa phương quan sát gốc cây và phương nằm ngang là 34°, góc lệch giữa phương quan sát ngọn cây và phương nằm ngang là 24°. Biết chiều cao của chân giác kế là 1,5 m. Chiều cao của cái cây là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Câu hỏi trong đề: Bài tập Giải tam giác có đáp án !!
Quảng cáo
Trả lời:
Giả sử toà nhà là AB, AB = 18,5 m; giác kế AC = 1,5 m; chiều cao của cái cây là DE; khoảng cách từ tòa nhà tới cây là BD = 30 m; góc tạo bởi phương quan sát gốc cây và phương nằm ngang là , góc tạo bởi phương quan sát ngọn cây và phương nằm ngang là . Ta cần tính DE.
Hình vẽ mô phỏng:
Ta có: BC = BA + AC = 18,5 + 1,5 = 20 (m).
Tam giác BCD vuông tại B, áp dụng định lí Pythagore ta có:
CD2 = BC2 + BD2 = 202 + 302 = 1300 (m).
Lại có:
CF // BD (so le trong)
Tam giác CDE có (định lí tổng ba góc trong tam giác)
.
Áp dụng định lí sin trong tam giác CDE ta có:
(m).
Vậy chiều cao của cây khoảng 6,6 m.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cách 1: áp dụng định lí sin và côsin
Áp dụng định lí sin trong tam giác ABC ta có:
.
Do đó: .
Lại có (định lí tổng ba góc trong tam giác)
.
Áp dụng định lí côsin trong tam giác ABC ta có:
AC2 = AB2 + BC2 – 2 . AB . AC . sin B = 52 + 72 – 2 . 5 . 7 . cos 22° ≈ 9
⇒ AC ≈ 3.
Cách 2: Dựng thêm đường cao và sử dụng định lí Pythagore.
Dựng đường cao CH của tam giác ABC.
Đặt AH = x.
Ta có: ( kề bù).
.
Tam giác ACH vuông tại H nên
.
Áp dụng định lí Pythagore ta tính được: .
Và BC2 = BH2 + CH2 = (BA + AH)2 + CH2
Thay số: 72 = (5 + x)2 + 3x2 (1)
Giải phương trình (1) ta được x = 1,5 là giá trị thỏa mãn.
Suy ra AC = 2x = 2 . 1,5 = 3.
Lời giải
Giả sử C là vị trí của ngọn hải đăng, kẻ CH vuông góc AB thì CH là khoảng cách giữa ngọn hải đăng và bờ.
Ta có: là góc ngoài tại đỉnh B của tam giác ABC.
Nên .
.
Áp dụng định lí sin trong tam giác ABC ta có:
.
Tam giác CBH vuông tại H nên
.
Vậy ngọn hải đăng cách bờ biển khoảng 41 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.