Câu hỏi:

13/07/2024 14,347

Tính độ dài cạnh AB trong mỗi trường hợp sau:

Tính độ dài cạnh AB trong mỗi trường hợp sau (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

* Hình 29: Góc B nhọn.

Áp dụng định lí sin trong tam giác ABC ta có: BCsinA=ACsinB

sinB=AC.sinABC=5,2.sin40°3,60,93.

Do đó: B^68°.

Lại có: A^+B^+C^=180° (định lí tổng ba góc trong tam giác)

C^=180°A^+B^=180°40°+68°=72°.

Áp dụng định lí côsin trong tam giác ABC ta có:

AB2 = AC2 + BC2 – 2 . AC . BC . cos C = (5,2)2 + (3,6)2 – 2 . 5,2 . 3,6 . cos 72° ≈ 28,43

AB ≈ 5,33 (m).

* Hình 30: Góc B tù.

Khi đó: B^=180°68°=112°.

Ta tính được: C^=28°.

Do đó:

AB2 = AC2 + BC2 – 2 . AC . BC . cos C = (5,2)2 + (3,6)2 – 2 . 5,2 . 3,6 . cos 28° ≈ 6,94

AB ≈ 2,63 (m).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1: áp dụng định lí sin và côsin

Cho tam giác ABC có AB = 5, BC = 7,góc A = 120 độ . Tính độ dài cạnh AC (ảnh 1)

Áp dụng định lí sin trong tam giác ABC ta có: ABsinC=BCsinA

sinC=AB.sinABC=5.sin120°7=5314.

Do đó: C^38°.

Lại có A^+B^+C^=180° (định lí tổng ba góc trong tam giác)

B^=180°A^+C^=180°120°+38°=22°.

Áp dụng định lí côsin trong tam giác ABC ta có:

AC2 = AB2 + BC2 – 2 . AB . AC . sin B = 52 + 72 – 2 . 5 . 7 . cos 22° ≈ 9

AC ≈ 3.

Cách 2: Dựng thêm đường cao và sử dụng định lí Pythagore.

Cho tam giác ABC có AB = 5, BC = 7,góc A = 120 độ . Tính độ dài cạnh AC (ảnh 2)

Dựng đường cao CH của tam giác ABC.

Đặt AH = x.

Ta có: BAC^+CAH^=180°( kề bù).

CAH^=180°BAC^=180°120°=60°.

Tam giác ACH vuông tại H nên

cosCAH^=AHCACA=AHcosCAH^=xcos60°=x12=2x.

Áp dụng định lí Pythagore ta tính được: CH=x3.

Và BC2 = BH2 + CH2 = (BA + AH)2 + CH2

Thay số: 72 = (5 + x)2 + 3x2 (1)

Giải phương trình (1) ta được x = 1,5 là giá trị thỏa mãn.

Suy ra AC = 2x = 2 . 1,5 = 3.

Lời giải

Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một ngọn hải đăng. Góc nghiêng của phương quan (ảnh 2)

Giả sử C là vị trí của ngọn hải đăng, kẻ CH vuông góc AB thì CH là khoảng cách giữa ngọn hải đăng và bờ.

Ta có: CBH^ là góc ngoài tại đỉnh B của tam giác ABC.

Nên BAC^+ACB^=CBH^.

ACB^=CBH^BAC^=75°45°=30°.

Áp dụng định lí sin trong tam giác ABC ta có: ABsinC=BCsinA

BC=AB.sinAsinC=30.sin45°sin30°=302.

Tam giác CBH vuông tại H nên sinCBH^=CHBC

CH=BC.sinCBH^=302.sin75°=15+15341.

Vậy ngọn hải đăng cách bờ biển khoảng 41 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay