Câu hỏi:

13/07/2024 2,199

Một người đứng ở bờ sông, muốn đo độ rộng của khúc sông chảy qua vị trí đang đứng (khúc sông tương đối thẳng, có thể xem hai bờ song song với nhau).

Một người đứng ở bờ sông, muốn đo độ rộng của khúc sông chảy qua vị trí đang đứng (khúc sông tương đối thẳng, có thể xem hai bờ song song với nhau) (ảnh 1)

Từ vị trí đang đứng A, người đó đo được góc nghiêng α = 35° so với bờ sông tới một vị trí C quan sát được ở phía bờ bên kia. Sau đó di chuyển dọc bờ sông đến vị trí B cách A một khoảng d = 50 m và tiếp tục đo được góc nghiêng β = 65° so với bờ bên kia tới vị trí C đã chọn (Hình 71). Hỏi độ rộng của khúc sông chảy qua vị trí người đó đang đứng là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Một người đứng ở bờ sông, muốn đo độ rộng của khúc sông chảy qua vị trí đang đứng (khúc sông tương đối thẳng, có thể xem hai bờ song song với nhau) (ảnh 2)

Dựng AD vuông góc với hai bên bờ sông, khi đó AD là độ rộng của khúc sông chạy qua vị trí của người đó đang đứng. Ta cần tính khoảng cách AD.

Xét tam giác ABC ta có:CAB^+ACB^=65°  (tính chất góc ngoài tại đỉnh B của tam giác)

Suy ra ACB^=65°CAB^=65°35°=30° .

Lại có ABC^=180°65°=115° .

Áp dụng định lí sin trong tam giác ABC ta có: ABsinACB^=ACsinABC^ .

Suy ra AC=AB.sinABC^sinACB^=50.sin115°sin30°90,6 .

Ta có: DAC^=90°35°=55° .

Tam giác ADC vuông tại D nên cosDAC^=ADAC  .

 AD=AC.cosDAC^=90,6.cos55°52 (m).

Vậy độ rộng của khúc sông chảy qua vị trí người đó đang đứng là 52 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = 3, AC = 4, góc BAC = 120 độ .  Tính (làm tròn kết quả đến hàng đơn vị) (ảnh 1)

a) + Áp dụng định lí côsin trong tam giác ABC ta có:

BC2 = AB2 + AC­2 – 2 . AB . AC . cosBAC^

        = 32 + 42 – 2 . 3. 4 . cos 120°

        = 9 + 16 – (– 12)

        = 37

Suy ra: BC=376.

+ Ta có: cosB=AB2+BC2AC22.AB.BC=32+62422.3.6=2936

Suy ra B^36°.

b) Áp dụng định lí sin trong tam giác ABC ta có: BCsinA=2R

Suy ra: R=BC2sinA=62.sin120°=233.

Vậy bán kính đường tròn ngoại tiếp tam giác ABC là R 3.

c) Diện tích tam giác ABC là: S=12AB.AC.sinA=12.3.4.sin120°=335.

d) Kẻ đường cao AH.

Ta có diện tích tam giác ABC là: S=12AH.BC

Suy ra: AH=2SBC=2.562.

e)

+ Ta có: AB.AC=AB.AC.cosAB,AC

=AB.AC.cosBAC^

= 3 . 4 . cos 120° = – 6.

Do đó: AB  .AC=6.

+ Do M là trung điểm của BC nên ta có: AB+AC=2AM  .

Suy ra: AM=12AB+AC.

Khi đó: AM.BC=12AB+AC.BC

=12AB+AC.BA+AC

=12AB+AC.AB+AC

=12AC+AB.ACAB

=12AC2AB2

=12ACAB=1243=12

  Vậy AM.BC=12.

Lời giải

+ Ta có:

A = (sin 20° + sin 70°)2 + (cos 20° + cos 110°)2

= [sin(90° – 70°) + sin 70°]2 + [cos(90° – 70°) + cos(180° – 70°)]2

= (cos70° + sin 70°)2 + [sin 70° + (– cos 70°)]2

= (cos 70° + sin 70°)2 + (sin 70° – cos 70°)2

= cos2 70° + 2 . cos 70° . sin 70° + sin2 70° + sin2 70° – 2 . sin 70° . cos 70° + cos2 70°

= 2(cos2 70° + sin2 70°)

= 2 . 1 = 2

Vậy A = 2.

+ Ta có:

B = tan 20° + cot 20° + tan 110° + cot 110°

= tan (90° – 70°) + cot(90° – 70°) + tan (180° – 70°) + cot (180° – 70°)

= cot 70° + tan 70° + (– tan 70°) + (– cot 70°)

= (cot 70° – cot 70°) + (tan 70° – tan 70°)

= 0 + 0 = 0

Vậy B = 0.