Câu hỏi:

08/01/2020 4,039 Lưu

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;1), B(0;1;2), C(-2;1;4) và mặt phẳng (P): x-y+z+2=0. Tìm điểm N(P)  sao cho S = 2NA2+NB2+NC2 đạt giá trị nhỏ nhất.

A. N(-2;0;1)

B.  N-43;2;43 

C. N-12;54;34

D. N(-1;2;1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp giải: Xét đẳng thức vectơ, đưa về hình chiếu của điểm trên mặt phẳng

Lời giải:

Gọi M(a;b;c) thỏa mãn đẳng thức vectơ 

=2(1-a;1-b;1-c)+(0-a; 1-b;2-c)+(-2-1;1-b;4-c)=0

Khi đó 

<=> N là hình chiếu của M trên (P) =>MN(P)

Phương trình đường thẳng  MN là  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Phương pháp giải: Viết phương trình đường thẳng vuông góc với mặt và đi qua điểm, tọa độ giao điểm của đường thẳng và mặt phẳng chính là tọa độ hình chiếu của điểm

Lời giải:

Gọi H là hình chiếu của A trên  α

=> t= - 1

Vậy tọa độ điểm cần tìm là  H(-1;1;-1)

Lời giải

Đáp án A

Phương pháp:

+) Viết phương trình mặt phẳng (ABC) ở dạng đoạn chắn, thay tọa độ điểm M vào pt mặt phẳng (ABC).

+) (ABC) tiếp xúc với mặt cầu (S) tâm I bán kính R <=> d(I;(ABC))=R

Cách giải:

(ABC) tiếp xúc với mặt cầu (S)  có tâm I và bán kính R=727

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP