Câu hỏi:

08/01/2020 3,485

Trong không gian với hệ trục tọa độ Oxyz ,cho tứ diện ABCD có tọa độ các điểm A(1;1;1), B(2;0;2), C(-1;-1;0), D(0;3;4). Trên các cạnh AB, AC, AD lần lượt lấy các điểm B',C', D'  sao cho ABAB'+ACAC'+ADAD'=4 và tứ diện AB'C'D' có thể tích nhỏ nhất. Phương trình mặt phẳng (B'C'D')

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Trên cạnh AB, AC , AD của tứ diện ABCD lần lượt có các điểm B', C', D'. Áp dụng công thức tỷ số thể tích ta có

Từ giả thiết 

áp dụng bất đẳng thức AM- GM ta có

Do thể tích ABCD cố định nên thể tích AB'C'D' nhỏ nhất 

=> (B'C'D') song song với (BCD) và đi qua điểm  B'

suy ra vectơ pháp tuyến của mặt phẳng (B'C'D')  là:

Vậy phương trình (B'C'D') là:

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Cách 1:

Gọi M,N  lần lượt là trung điểm AB, BC

Gọi n là véc tơ pháp tuyến của mặt phẳng (ABC).

I là tâm đường tròn ngoại tiếp tam giác ABC

Cách 2:

Ta có 

=> Tam giác ABC vuông tại B

 I là tâm đường tròn ngoại tiếp tam giác ABC nên I là trung điểm của AC.

Lời giải

Chọn B

Do G là trọng tâm tam giác ABC => G(2;3;1).

Gọi H là hình chiếu vuông góc của G trên mặt phẳng (Oxz), khi đó GH là khoảng cách từ G đến mặt phẳng (Oxz), ta có: 

Với M là điểm thay đổi trên mặt phẳng (Oxz)

do đó GM  ngắn nhất MH

Vậy độ dài GM ngắn nhất bằng 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP