Trong không gian với hệ tọa độ Oxyz, cho A(1;0;2), B(3;1;4), C(3;-2;1). Tìm tọa độ điểm S, biết SA vuông góc với (ABC), mặt cầu ngoại tiếp tứ diện S.ABC có bán kính bằng và S có cao độ âm.
A. S(4;6;-4)
B.S(4;-6;-4)
C. S(-4;6;-4)
D. S(-4;-6;-4)
Quảng cáo
Trả lời:
Chọn A.

Ta có
![]()
![]()
Do SA vuông góc với (ABC) nên một VTCP của đường thẳng SA được chọn là
![]()
Đường thẳng SA qua A(1;0;2) và có VTCP nên có phương trình tham số là:

![]()
![]()
Gọi M là trung điểm BC khi đó M là tâm đường tròn ngoại tiếp tam giác ABC. Gọi d là đường thẳng qua M và song song với AS nên d(ABC), suy ra d là trục đường tròn ngoại tiếp tam giác ABC.
Trong mặt phẳng (SAM) vẽ đường trung trực của SA cắt d tại I và cắt SA tại N.
Mặt phẳng (ABC) qua A và có một VTPT
![]()
nên có phương trình tổng quát là:
![]()
![]()
![]()
![]()
![]()

![]()
![]()
![]()


mà cao độ của S âm nên S(4;5;-4) thỏa yêu cầu bài toán.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Cách 1:
![]()
Gọi M,N lần lượt là trung điểm AB, BC

Gọi là véc tơ pháp tuyến của mặt phẳng (ABC).
![]()
![]()
I là tâm đường tròn ngoại tiếp tam giác ABC




Cách 2:
Ta có
![]()
![]()
=> Tam giác ABC vuông tại B
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên I là trung điểm của AC.


Lời giải
Chọn B
Do G là trọng tâm tam giác ABC => G(2;3;1).
Gọi H là hình chiếu vuông góc của G trên mặt phẳng (Oxz), khi đó GH là khoảng cách từ G đến mặt phẳng (Oxz), ta có:
![]()
Với M là điểm thay đổi trên mặt phẳng (Oxz)
![]()
do đó GM ngắn nhất
Vậy độ dài GM ngắn nhất bằng 3
Câu 3
A. T = - 3
B. T = 1
C. T = 3
D. T = - 1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



