Câu hỏi:

12/07/2024 21,109

Hai người cùng kéo một con thuyền với hai lực F1=OA,  F2=OB có độ lớn lần lượt là 400 N, 600 N (Hình 8). Cho biết góc giữa hai vectơ là 60°. Tìm độ lớn của vectơ hợp lực F là tổng của hai lực F1F2.

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có OACB là hình bình hành, áp dụng quy tắc hình bình hành ta có:

OA+OB=OC

Hay F1+F2=F 

Do đó |F|=|F1+F2|=|OC|=OC.

Ta có: OA=|OA|=|F1|=400  N; OB=|OB|=|F2|=600  N; AOB^=60°.

Do OACB là hình bình hành nên OB // AC

Suy ra AOB^+OAC^=180° (hai góc trong cùng phía)

Nên OAC^=180°AOB^=180°60°=120°.

Lại có: AC = OB = 600 N.

Áp dụng định lí côsin trong tam giác OAC ta có:

OC2 = OA2 + AC2 – 2 . OA . AC . cosOAC

= 4002 + 6002 – 2 . 400 . 600 . cos120° = 760000

Suy ra OC = 20019 N.

Vậy độ lớn của hợp lực F |F|=20019 N.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Dựng hình bình hành ABDC, nối A với D.

Áp dụng quy tắc hình hình hành ta có: AB+AC=AD.

Khi đó |AB+AC|=|AD|=AD.

Do tam giác ABC đều nên AB = AC = BC = a.

Suy ra hình bình hành ABDC là hình thoi.

Nên BD = AB = a.

Ta có: CAB^=60° (tam giác ABC đều)

Suy ra ABD^=180°CAB^=180°60°=120° (AC // BD, hai góc trong cùng phía bù nhau).

Xét tam giác ABD, áp dụng định lí côsin ta có:

AD2 = AB2 + BD2 – 2 . AB . BD . cosB

        = a2 + a2 – 2 . a . a . cos120° = 3a2

Suy ra AD=a3.

Vậy |AB+AC|=AD=a3.

Lời giải

Media VietJack

a) Do ABCD là hình bình hành nên AB=DC.

Do đó: BA+DC=BA+AB=BB=0.

Vậy BA+DC=0.

b) Vì O là giao điểm của hai đường chéo AC và BD của hình bình hành ABCD nên O là trung điểm của AC và BD.

Do đó: OA+OC=0;  OB+OD=0.

Ta có: MA+MC=(MO+OA)+(MO+OC)

=MO+MO+(OA+OC)=MO+MO+0=MO+MO   (1)

Và MB+MD=(MO+OB)+(MO+OD)

=MO+MO+(OB+OD)=MO+MO+0=MO+MO (2)

Từ (1) và (2) suy ra MA+MC=MB+MD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay