Câu hỏi:

10/01/2020 2,852

Cho A là tập tất cả các số tự nhiên có 5 chữ số phân biệt. Chọn ngẫu nhiên một số từ tập tính xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1.

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

 là tập tất cả các số tự nhiên có 5 chữ số nên 

Số phần tử của không gian mẫu là 

Gọi X là biến cố: “Chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1 từ tập A”.

 có tận cùng bằng 1,do đó  với   có chữ số tận cùng là 3.

Xét các trường hợp sau:

1) M là số có 4 chữ số có dạng mnpq¯  Khi đó: 

- Với m = 1, do và q = 3 nên n  4

+) Khi n = 4 thì p > 2 nên p {4;5;6;7;8;9}. Ta được 6 số thỏa mãn.

+) Khi n5: Có 5 cách chọn n thuộc tập hợp {5;6;7;8;9}. Khi đó pm,n,q nên p có 7 cách chọn. Ta được 35 số thỏa mãn.

- Với m2 tức là có 7 cách chọn m từ tập {2;4;5;6;7;8;9}. Khi đó  với mọi n,p thuộc tập hợp {0;1;2;4;5;6;7;8;9} và npm, do đó có 8 cách chọn n, có 7 cách chọn p. Ta được 7.8.7 = 392 số thỏa mãn

2) M là số có 5 chữ số có dạng mnpqr¯  Khi đó: mnpqr¯  14285 và r = 3

Do mnpqr¯  14285  nên m chỉ nhận giá trị bằng 1 và n4

- Với m=1; n = 0,2 thì p,q là các số tùy ý thuộc tập {0;2;4;5;6;7;8;9} và pqn Ta được 2.7.6 = 84 số thỏa mãn.

- Với m=1; n = 4:

+) Khi p = 0 thì q là số tùy ý thuộc tập {2;5;6;7;8;9}. Ta được 6 số thỏa mãn.

+) Khi p = 2 thì q phải thuộc tập {0;5;6;7;8}. Ta được 5 số thỏa mãn.

Vậy số phần tử của biến cố X là n(X) = 6 + 35 + 392 + 84 + 6 + 5 = 528

Xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là 1 bằng

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tập S = {1;2;3;...;19;20} gồm 20 số tự nhiên từ 1 đến 20. Lấy ngẫu nhiên ba số thuộc S. Xác suất để ba số lấy được lập thành một cấp số cộng là

Xem đáp án » 10/01/2020 99,301

Câu 2:

Có hai dãy ghế đối diện nhau, mỗi dãy có 3 ghế. Xếp ngẫu nhiên 6 học sinh, gồm 3 nam và 3 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ bằng:

Xem đáp án » 10/01/2020 91,570

Câu 3:

Cho A là tập tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên một số từ tập A, tính xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 1.

Xem đáp án » 10/01/2020 37,820

Câu 4:

Gọi A là tập các số tự nhiên có 3 chữ số đôi một khác nhau. Lấy ngẫu nhiên ra từ A hai số. Tính xác suất để lấy được hai số mà các chữ số có mặt ở hai số đó giống nhau.

Xem đáp án » 10/01/2020 21,350

Câu 5:

Cho đa giác 30 đỉnh nội tiếp đường tròn, gọi (S) là tập hợp các đường thẳng đi qua hai trong số 30 đỉnh đã cho. Chọn 2 đường thẳng bất kỳ thuộc tập (S). Tính xác suất để chọn được 2 đường thẳng mà giao điểm của chúng nằm bên trong đường tròn.

Xem đáp án » 10/01/2020 19,761

Câu 6:

Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn có dạng abcd¯ , trong đó 1abcd9

Xem đáp án » 09/01/2020 17,261

Câu 7:

Giải bóng chuyền quốc tế VTV Cup có 8 đội tham gia, trong đó có hai đội Việt Nam. Ban tổ chức bốc thăm ngẫu nhiên để chia thành hai bảng đấu, mỗi bảng 4 đội. Xác suất để hai đội của Việt Nam nằm ở hai bảng khác nhau bằng

Xem đáp án » 10/01/2020 16,979

Bình luận


Bình luận
Vietjack official store