Câu hỏi:

10/01/2020 7,848

Cho tập hợp (S). Hai bạn A, B mỗi bạn chọn ngẫu nhiên một tập con của (S). Xác suất để tập con của A và B chọn được có đúng 2 phần tử chung gần nhất với kết quả nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Số tập con của S là 26 = 64

Mỗi người có 64 cách chọn tập con, do vậy số phần tử của không gian mẫu là: 642

Ta tìm số cách chọn tập con thỏa mãn yêu cầu:

Giả sử tập con của A và B chọn được lần lượt có x,y phần tử 

Khi đó: A có C6x cách chọn tập con, lúc này S còn 6 - x phần tử.

Ta chọn ra 2 phần tử gọi là a,b từ x phần tử  trong tập con của A để xuất hiện trong tập con của B, có Cx2  cách.

 

Như vậy, tập con của B đã có 2 phần tử chung với tập con của A là a,b ta cần chọn thêm (y-2) phần tử khác trong (6-x) phần tử còn lại sau khi A đã chọn tập con,ở bước này cóC6-xy-2 cách chọn.

Vậy có:  C6xC6-xy-2 cách chọn tập con thỏa mãn.

Ta có điều kiện: 

 

Cho x nhận các giá trị từ 2 đến 6, số cách chọn tập con thỏa mãn yêu cầu đề bài là:

= 240 + 480 + 360 + 120 + 15 = 1215

Xác suất cần tính bằng: 

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Lấy 3 phần tử từ tập S có 

Suy ra số phần tử của không gian mẫu là 

Gọi A là biến cố thỏa mãn yêu cầu bài toán.

Đặt  có 10 phần tử.

 có 10 phần tử.

a, b, c là ba số theo thứ tự lập thành cấp số cộng => 2a = b + c

Có 2a là số chẵn, nên b và c cùng chẵn hoặc cùng lẻ.

Suy ra số cách chọn b, c là 

Mỗi cách chọn cặp b, c thì có duy nhất một cách chọn a sao cho 2a = b + c

Suy ra số phần tử của biến cố là 

Xác suất thỏa yêu cầu bài là 

Lời giải

Chọn A.

Số phần tử của không gian mẫu là n(W =) 6!.

Gọi  A là biến cố : "Các bạn học sinh nam ngồi đối diện các bạn nữ".

Chọn chỗ cho học sinh nam thứ nhất có 6 cách.

Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)

Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ  hai).

Xếp chỗ cho 3 học sinh nữ : 3! cách.

Theo quy tắc nhân ta có  cách

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay