Câu hỏi:
13/07/2024 5,511Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các bất phương trinh bậc hai sau đây:
a) x2 + 2,5x – 1,5 ≤ 0;
b) – x2 – 8x – 16 < 0
c) – 2x2 + 11x – 12 > 0
d) x2 + x + 1 ≤ 0
Quảng cáo
Trả lời:
a)
b)
Dựa vào hình vẽ ta thấy:
Đồ thị hàm số f(x) cắt trục hoành tại một điểm có hoành độ x = -4 hay f(x) = 0 khi x = -4.
Với x ≠ -4 thì đồ thị hàm số f(x) nằm phía dưới trục hoành nên f(x) < 0 với x ≠ -4.
Vậy bất phương trình – x2 – 8x – 16 < 0 có tập nghiệm là S = ℝ\{-4}.
c)
Dựa vào hình vẽ ta thấy:
Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt x1 = \(\frac{3}{2}\) và x2 = 4 hay f(x) = 0 khi x1 = \(\frac{3}{2}\) và x2 = 4.
Đồ thi hàm số f(x) nằm phía dưới trục hoành với x thuộc hai khoảng \(\left( { - \infty ;\frac{3}{2}} \right)\) và (4; +∞) hay f(x) < 0 với x thuộc \(\left( { - \infty ;\frac{3}{2}} \right)\) ∪ (4; +∞).
Đồ thị hàm số f(x) nằm phía trên trục hoành với x thuộc khoảng \(\left( {\frac{3}{2};4} \right)\) hay f(x) > 0 với x thuộc khoảng \(\left( {\frac{3}{2};4} \right)\).
Vậy bất phương trình – 2x2 + 11x – 12 > 0 có tập nghiệm S = \(\left( {\frac{3}{2};4} \right)\).
d)
Dựa vào hình vẽ ta thấy:
Đồ thi hàm số f(x) nằm phía trên trục hoành với mọi x hay f(x) > 0 với x ∈ ℝ.
Vậy bất phương trình \(\frac{1}{2}\)x2 + \(\frac{1}{2}\)x + 1 ≤ 0 có tập nghiệm S = \(\emptyset \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Mảnh đất hình chữ nhật có 30m hàng rào nghĩa là chu vi mảnh đấy hình chữ nhật là 30m. Khi đó nửa chu vi của hình chữ nhật là 30 : 2 = 15 (m).
Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (0 < x < 15).
Chiều dài hình chữ nhật là: 15 – x (m).
Diện tích mảnh đất hình chữ nhật là x(15 – x) = - x2 + 15x (m).
Vì diện tích mảnh vườn hoa ít nhất là 50 m2 nên – x2 + 15x ≥ 50 ⇔ - x2 + 15x – 50 ≥ 0.
Tam thức bậc hai – x2 + 15x – 50 có ∆ = 152 – 4.(-1).(-50) = 25 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 5, x2 = 10 và a = -1 < 0.
Suy ra f(x) dương khi x nằm trong khoảng (5; 10) và f(x) = 0 khi x = 5 hoặc x = 10.
Do đó đó - x2 + 15x – 50 ≥ 0 khi x ∈ [5; 10].
Vậy chiều rộng của mảnh vườn nằm trong đoạn [5; 10] thì thỏa mãn yêu cầu bài toán.
Lời giải
a) Xét hiệu h(t) – 7 = - 4,9t2 + 10t + 1,6 – 7 = - 4,9t2 + 10t – 5,4 là hàm số bậc hai với a = -4,9, b = 10, c = - 5,4 và ∆ = 102 – 4.(-4,9).(-5,4) = -5,84 < 0. Do đó tam thức -4,9t2 + 10t – 5,4 vô nghiệm và a = - 4,9 > 0 nên - 4,9t2 + 10t – 5,4 < 0 với mọi t hay h(t) – 7 < 0 với mọi t.
⇔ h(t) < 7 với mọi t.
Vì vậy bóng không thể đạt độ cao trên 7m.
b) Bóng ở độ cao trên 5m nghĩa là h(t) ≥ 5 ⇔ -4,9t2 + 10t + 1,6 ≥ 5
⇔ -4,9t2 + 10t + 1,6 – 5 ≥ 0.
⇔ -4,9t2 + 10t – 3,4 ≥ 0.
Tam thức k(t) = -4,9t2 + 10t – 3,4 có ∆ = 102 – 4.(-4,9).(-3,4) = 33,36 > 0. Do đó k(t) có hai nghiệm phân biệt t1 ≈ 1,61 và t2 ≈ 0,43.
Suy ra k(t) > 0 khi t ∈ (0,43; 1,61).
Khi đó bóng ở độ cao trên 5m nằm trong khoảng thời gian từ 1,61 – 0,43 = 1,18s.
Vậy trong khoảng thời gian 1,18s thì bóng ở độ cao trên 5m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
50 câu trắc nghiệm Thống kê cơ bản (phần 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận