Câu hỏi:

13/07/2024 5,511

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các bất phương trinh bậc hai sau đây:

a) x2 + 2,5x – 1,5 ≤ 0;

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 1)

b) – x2 – 8x – 16 < 0

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 2)

c) – 2x2 + 11x – 12 > 0

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 3)

d) 12x2 + 12 x + 1 ≤ 0

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 4)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) 

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 5)

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 6)

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 7)

b)

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 8)

Dựa vào hình vẽ ta thấy:

Đồ thị hàm số f(x) cắt trục hoành tại một điểm có hoành độ x = -4 hay f(x) = 0 khi x = -4.

Với x ≠ -4 thì đồ thị hàm số f(x) nằm phía dưới trục hoành nên f(x) < 0 với x ≠ -4.

Vậy bất phương trình – x2 – 8x – 16 < 0 có tập nghiệm là S = ℝ\{-4}.

c)

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 9)

Dựa vào hình vẽ ta thấy:

Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt x1 = \(\frac{3}{2}\) và x2 = 4 hay f(x) = 0 khi x1 = \(\frac{3}{2}\) và x2 = 4.

Đồ thi hàm số f(x) nằm phía dưới trục hoành với x thuộc hai khoảng \(\left( { - \infty ;\frac{3}{2}} \right)\) và (4; +∞) hay f(x) < 0 với x thuộc \(\left( { - \infty ;\frac{3}{2}} \right)\) (4; +∞).

Đồ thị hàm số f(x) nằm phía trên trục hoành với x thuộc khoảng \(\left( {\frac{3}{2};4} \right)\) hay f(x) > 0 với x thuộc khoảng \(\left( {\frac{3}{2};4} \right)\).

Vậy bất phương trình – 2x2 + 11x – 12 > 0 có tập nghiệm S = \(\left( {\frac{3}{2};4} \right)\).

d)

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 10)

Dựa vào hình vẽ ta thấy:

Đồ thi hàm số f(x) nằm phía trên trục hoành với mọi x hay f(x) > 0 với x ℝ.

Vậy bất phương trình \(\frac{1}{2}\)x2 + \(\frac{1}{2}\)x + 1 ≤ 0 có tập nghiệm S = \(\emptyset \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Mảnh đất hình chữ nhật có 30m hàng rào nghĩa là chu vi mảnh đấy hình chữ nhật là 30m. Khi đó nửa chu vi của hình chữ nhật là 30 : 2 = 15 (m).

Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (0 < x < 15).

Chiều dài hình chữ nhật là: 15 – x (m).

Diện tích mảnh đất hình chữ nhật là x(15 – x) = - x2 + 15x (m).

Vì diện tích mảnh vườn hoa ít nhất là 50 m2 nên – x2 + 15x ≥ 50 - x2 + 15x – 50 ≥ 0.

Tam thức bậc hai – x2 + 15x – 50 có ∆ = 152 – 4.(-1).(-50) = 25 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 5, x2 = 10 và a = -1 < 0.

Suy ra f(x) dương khi x nằm trong khoảng (5; 10) và f(x) = 0 khi x = 5 hoặc x = 10.

Do đó đó - x2 + 15x – 50 ≥ 0 khi x [5; 10].

Vậy chiều rộng của mảnh vườn nằm trong đoạn [5; 10] thì thỏa mãn yêu cầu bài toán.

Lời giải

a) Xét hiệu h(t) – 7 = - 4,9t2 + 10t + 1,6 – 7 = - 4,9t2 + 10t – 5,4 là hàm số bậc hai với a = -4,9, b = 10, c = - 5,4 và ∆ = 102 – 4.(-4,9).(-5,4) = -5,84 < 0. Do đó tam thức -4,9t2 + 10t – 5,4 vô nghiệm và a = - 4,9 > 0 nên - 4,9t2 + 10t – 5,4 < 0 với mọi t hay h(t) – 7 < 0 với mọi t.

h(t) < 7 với mọi t.

Vì vậy bóng không thể đạt độ cao trên 7m.

b) Bóng ở độ cao trên 5m nghĩa là h(t) ≥ 5 -4,9t2 + 10t + 1,6 ≥ 5

-4,9t2 + 10t + 1,6 – 5 ≥ 0.

-4,9t2 + 10t – 3,4 ≥ 0.

Tam thức k(t) = -4,9t2 + 10t – 3,4 có ∆ = 102 – 4.(-4,9).(-3,4) = 33,36 > 0. Do đó k(t) có hai nghiệm phân biệt t1 ≈ 1,61 và t2 ≈ 0,43.

Suy ra k(t) > 0 khi t (0,43; 1,61).

Khi đó bóng ở độ cao trên 5m nằm trong khoảng thời gian từ 1,61 – 0,43 = 1,18s.

Vậy trong khoảng thời gian 1,18s thì bóng ở độ cao trên 5m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay