Câu hỏi:

13/07/2024 30,843

Một quả bóng được ném thẳng ở độ cao 1,6m so với mặt đất với vận tốc 10m/s. Độ cao của bóng so với mặt đất (tính bằng mét) sau t giây được cho bởi hàm số h(t) = - 4,9t2 + 10t + 1,6. Hỏi:

a) Bóng có thể cao trên 7m không?

b) Bóng ở độ cao trên 5m trong khoảng thời gian bao lâu? Làm tròn kết quả đến hàng phần trăm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Xét hiệu h(t) – 7 = - 4,9t2 + 10t + 1,6 – 7 = - 4,9t2 + 10t – 5,4 là hàm số bậc hai với a = -4,9, b = 10, c = - 5,4 và ∆ = 102 – 4.(-4,9).(-5,4) = -5,84 < 0. Do đó tam thức -4,9t2 + 10t – 5,4 vô nghiệm và a = - 4,9 > 0 nên - 4,9t2 + 10t – 5,4 < 0 với mọi t hay h(t) – 7 < 0 với mọi t.

h(t) < 7 với mọi t.

Vì vậy bóng không thể đạt độ cao trên 7m.

b) Bóng ở độ cao trên 5m nghĩa là h(t) ≥ 5 -4,9t2 + 10t + 1,6 ≥ 5

-4,9t2 + 10t + 1,6 – 5 ≥ 0.

-4,9t2 + 10t – 3,4 ≥ 0.

Tam thức k(t) = -4,9t2 + 10t – 3,4 có ∆ = 102 – 4.(-4,9).(-3,4) = 33,36 > 0. Do đó k(t) có hai nghiệm phân biệt t1 ≈ 1,61 và t2 ≈ 0,43.

Suy ra k(t) > 0 khi t (0,43; 1,61).

Khi đó bóng ở độ cao trên 5m nằm trong khoảng thời gian từ 1,61 – 0,43 = 1,18s.

Vậy trong khoảng thời gian 1,18s thì bóng ở độ cao trên 5m.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Mảnh đất hình chữ nhật có 30m hàng rào nghĩa là chu vi mảnh đấy hình chữ nhật là 30m. Khi đó nửa chu vi của hình chữ nhật là 30 : 2 = 15 (m).

Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (0 < x < 15).

Chiều dài hình chữ nhật là: 15 – x (m).

Diện tích mảnh đất hình chữ nhật là x(15 – x) = - x2 + 15x (m).

Vì diện tích mảnh vườn hoa ít nhất là 50 m2 nên – x2 + 15x ≥ 50 - x2 + 15x – 50 ≥ 0.

Tam thức bậc hai – x2 + 15x – 50 có ∆ = 152 – 4.(-1).(-50) = 25 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 5, x2 = 10 và a = -1 < 0.

Suy ra f(x) dương khi x nằm trong khoảng (5; 10) và f(x) = 0 khi x = 5 hoặc x = 10.

Do đó đó - x2 + 15x – 50 ≥ 0 khi x [5; 10].

Vậy chiều rộng của mảnh vườn nằm trong đoạn [5; 10] thì thỏa mãn yêu cầu bài toán.

Lời giải

Gọi A, H, B lần lượt là các điểm trên hình vẽ:

Mặt cắt ngang của mặt đường thường có dạng hình parabol để nước mưa dễ dàng thoáng  (ảnh 2)

Đổi 15cm = 0,15 m.

Để tim đường cao hơn lề đường không quá 15cm thì OH ≤ 0,15 hay – (– 0,006x2) ≤ 0,15.

x2 – 25 ≥ 0.

Xét tam thức bậc hai f(x) = x2 – 25 có ∆ = 02 – 4.(-25) = 100 > 0, a = 1 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = - 5 và x2 = 5.

Ta có bảng xét dấu:

Mặt cắt ngang của mặt đường thường có dạng hình parabol để nước mưa dễ dàng thoáng  (ảnh 3)

Suy ra f(x) không âm khi x thuộc đoạn [-5; 5].

Tương ứng x1, x2 lần lượt là hoành độ của các điểm A và B. Khi đó AB = |x2 – x1| = |5 – (-5)| = 10.

Vậy độ rộng của đường là 10 m thì tim đường cao hơn lề đường không quá 15cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay