Câu hỏi:
13/07/2024 23,653Mặt cắt ngang của mặt đường thường có dạng hình parabol để nước mưa dễ dàng thoáng sang hai bên. Mặt cắt ngang của một con đường được mô tả bằng hàm số y = - 0,006x2 với gốc tọa độ đặt tại tim đường và đơn vị đo là mét như trong Hình 4. Với chiều rộng của đường như thế nào thì tim đường cao hơn lề đường không quá 15cm.
Quảng cáo
Trả lời:
Gọi A, H, B lần lượt là các điểm trên hình vẽ:
Đổi 15cm = 0,15 m.
Để tim đường cao hơn lề đường không quá 15cm thì OH ≤ 0,15 hay – (– 0,006x2) ≤ 0,15.
⇔ x2 – 25 ≥ 0.
Xét tam thức bậc hai f(x) = x2 – 25 có ∆ = 02 – 4.(-25) = 100 > 0, a = 1 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = - 5 và x2 = 5.
Ta có bảng xét dấu:
Suy ra f(x) không âm khi x thuộc đoạn [-5; 5].
Tương ứng x1, x2 lần lượt là hoành độ của các điểm A và B. Khi đó AB = |x2 – x1| = |5 – (-5)| = 10.
Vậy độ rộng của đường là 10 m thì tim đường cao hơn lề đường không quá 15cm.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Mảnh đất hình chữ nhật có 30m hàng rào nghĩa là chu vi mảnh đấy hình chữ nhật là 30m. Khi đó nửa chu vi của hình chữ nhật là 30 : 2 = 15 (m).
Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (0 < x < 15).
Chiều dài hình chữ nhật là: 15 – x (m).
Diện tích mảnh đất hình chữ nhật là x(15 – x) = - x2 + 15x (m).
Vì diện tích mảnh vườn hoa ít nhất là 50 m2 nên – x2 + 15x ≥ 50 ⇔ - x2 + 15x – 50 ≥ 0.
Tam thức bậc hai – x2 + 15x – 50 có ∆ = 152 – 4.(-1).(-50) = 25 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 5, x2 = 10 và a = -1 < 0.
Suy ra f(x) dương khi x nằm trong khoảng (5; 10) và f(x) = 0 khi x = 5 hoặc x = 10.
Do đó đó - x2 + 15x – 50 ≥ 0 khi x ∈ [5; 10].
Vậy chiều rộng của mảnh vườn nằm trong đoạn [5; 10] thì thỏa mãn yêu cầu bài toán.
Lời giải
a) Xét hiệu h(t) – 7 = - 4,9t2 + 10t + 1,6 – 7 = - 4,9t2 + 10t – 5,4 là hàm số bậc hai với a = -4,9, b = 10, c = - 5,4 và ∆ = 102 – 4.(-4,9).(-5,4) = -5,84 < 0. Do đó tam thức -4,9t2 + 10t – 5,4 vô nghiệm và a = - 4,9 > 0 nên - 4,9t2 + 10t – 5,4 < 0 với mọi t hay h(t) – 7 < 0 với mọi t.
⇔ h(t) < 7 với mọi t.
Vì vậy bóng không thể đạt độ cao trên 7m.
b) Bóng ở độ cao trên 5m nghĩa là h(t) ≥ 5 ⇔ -4,9t2 + 10t + 1,6 ≥ 5
⇔ -4,9t2 + 10t + 1,6 – 5 ≥ 0.
⇔ -4,9t2 + 10t – 3,4 ≥ 0.
Tam thức k(t) = -4,9t2 + 10t – 3,4 có ∆ = 102 – 4.(-4,9).(-3,4) = 33,36 > 0. Do đó k(t) có hai nghiệm phân biệt t1 ≈ 1,61 và t2 ≈ 0,43.
Suy ra k(t) > 0 khi t ∈ (0,43; 1,61).
Khi đó bóng ở độ cao trên 5m nằm trong khoảng thời gian từ 1,61 – 0,43 = 1,18s.
Vậy trong khoảng thời gian 1,18s thì bóng ở độ cao trên 5m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Không gian mẫu và biến cố có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận