Câu hỏi:

04/07/2022 801

A. Các câu hỏi trong bài

Gieo một xúc xắc hai lần liên tiếp. Xét biến cố “Có ít nhất một lần xuất hiện mặt 6 chấm”.

Media VietJack

Làm thế nào để tính được xác suất của biến cố nói trên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Sau bài này, ta sẽ giải quyết bài toán trên như sau:

Để tính xác suất của biến cố, ta cần tìm số phần tử của không gian mẫu và số phần tử của biến cố, sau đó tính tỉ số giữa số phần tử của biến cố và số phần tử của không gian mẫu, đây là xác suất của biến cố cần tìm.

Giải chi tiết:

Gieo một xúc xắc 2 lần liên tiếp, số phần tử của không gian mẫu là n(Ω) = 36.

Gọi biến cố A: “Có ít nhất một lần xuất hiện mặt 6 chấm”.

Các kết quả thuận lợi cho biến cố A là: (6; 1), (6; 2), (6; 3), (6; 4), (6; 5), (6; 6), (1; 6), (2; 6), (3; 6), (4; 6), (5; 6).

Hay A = {(6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6); (1; 6); (2; 6); (3; 6); (4; 6); (5; 6)}.

Do đó, n(A) = 11.

Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{11}}{{36}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Tổng số bông hoa là: 5 + 5 + 6 = 16 (bông).

Mỗi lần chọn 4 bông hoa từ 16 bông hoa cho ta một tổ hợp chập 4 của 16 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 4 của 16 phần tử và

\(n\left( \Omega \right) = C_{16}^4 = \frac{{16!}}{{12!\,\,.\,\,4!}} = \frac{{16.15.14.13}}{{4.3.2.1}} = 1820\).

Xét biến cố H: “Bốn bông hoa chọn ra có cả ba màu”.

Việc chọn 4 bông hoa có cả ba màu là thực hiện một trong ba khả năng sau:

- Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ;

- Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ;

- Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ;

• Xét khả năng thứ nhất: Chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ.

Có 5 cách chọn 1 bông hoa màu trắng.

Có 5 cách chọn 1 bông hoa màu vàng.

\(C_6^2\) cách chọn 2 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 1 bông hoa màu vàng và 2 bông hoa màu đỏ là 5 . 5 . \(C_6^2\) = 375.

• Xét khả năng thứ hai: Chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ.

Có 5 cách chọn 1 bông hoa màu trắng.

\(C_5^2\) cách chọn 2 bông hoa màu vàng.

Có 6 cách chọn 1 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 1 bông hoa màu trắng, 2 bông hoa màu vàng và 1 bông hoa màu đỏ là 5 . \(C_5^2\) . 6 = 300.

• Xét khả năng thứ ba: Chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ.

\(C_5^2\) cách chọn 2 bông hoa màu trắng.

Có 5 cách chọn 1 bông hoa màu vàng.

Có 6 cách chọn 1 bông hoa màu đỏ.

Theo quy tắc nhân, số cách chọn ra 2 bông hoa màu trắng, 1 bông hoa màu vàng và 1 bông hoa màu đỏ là \(C_5^2\) . 5 . 6 = 300.

Theo quy tắc cộng, số cách chọn 4 bông hoa đủ cả ba màu là: 375 + 300 + 300 = 975.

Vì thế, n(H) = 975.  

Vậy xác suất của biến cố H: “Bốn bông hoa chọn ra có cả ba màu” là 

\(P\left( H \right) = \frac{{n\left( H \right)}}{{n\left( \Omega \right)}} = \frac{{975}}{{1820}} = \frac{{15}}{{28}}\).

Lời giải

Hướng dẫn giải:

Gọi biến cố A: “Tích các số trên hai thẻ là số lẻ”.

Tích của hai số là số lẻ khi hai số đó là số lẻ.

Trong 5 thẻ đã cho, các thẻ ghi số lẻ là các thẻ ghi số 1, 3, 5; có 3 thẻ ghi số lẻ.

Lấy hai thẻ ghi số lẻ trong 3 thẻ ghi số lẻ có \(C_3^2 = 3\) cách, vậy n(A) = 3.

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{{10}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay