Câu hỏi:

12/07/2024 1,432

Cho đoạn thẳng AB = 4cm, C là điểm di động sao cho BC = 3cm. Vẽ tam giác AMN vuông tại A có AC là đường cao. Xác định vị trí điểm C để 1AM2+1AN2 đạt giá trị lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đoạn thẳng AB = 4cm, C là điểm di động sao cho BC = 3cm. Vẽ tam giác AMN (ảnh 1)

Xét  ΔAMN vuông tại A, AC là đường cao (gt), áp dụng hệ thức lượng ta có:

1AM2+1AN2=1AC2

Xét ba điểm A, B, C  ta có: ACABACAC1cm

Do vậy 1AC1. Dấu "=" xảy ra C nằm giữa hai điểm A và B

Vậy khi C nằm giữa A và B sao cho AB = 3cm thì 1AM2+1AN2 lớn nhất

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thoi ABCD với góc A = 120 độ. Tia Ax tạo với tia AB  bằng  15 độ (ảnh 1)

Vẽ AEAN,EDCAHDC,HDC

Ta có : DAE^=DAB^EAN^+BAx^=150

Xét ΔABMΔADE có: ABM^=ADE^;AB=AD (tính chất hình thoi); BAM^=DAE^=150

Do đó ΔABM=ΔADE(g.c.g)AM=AE

ΔADH vuông tại H có:

ADH^=1800BAD^=600 nên là nửa tam giác đều

DH=12AD=12AB

ΔADHH^=900, theo định lý pytago ta có:

AH2+DH2=AD2AH2=AB212AB2=34AB2 1AH2=43AB2

 

ΔANEA^=900,AHDN, theo hệ thức về cạnh và đường cao trong tam giác vuông, ta có: 1AE2+1AN2=1AH21AM2+1AN2=43AB2


Lời giải

Cho tam giác nhọn ABC, AH là đường cao, D, E lần lượt là hình chiếu của H (ảnh 1)

    a) ΔAHB vuông tại H, HD là đường cao, áp dụng hệ thức lượng

AH2=AD.AB(1), chứng minh tương tự ta có AH2=AE.AC(2)

Từ (1) và (2) suy ra AD.AB=AE.AC

    b) Từ AD.AB=AE.ACADAE=ACAB

Xét ΔADEΔACB có: ADAE=ACAB;A^ chung

ΔADE~ΔACB(c.g.c)AED^=ABC^ (hai góc tương ứng)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP