Cho ΔABC có đường cao AM và BN cắt nhau tại H. Chọn câu đúng.
Cho ΔABC có đường cao AM và BN cắt nhau tại H. Chọn câu đúng.
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: C

Xét ΔABC có:
AM là đường cao (gt);
BN là đường cao (gt);
AM và BN cắt nhau tại H.
Do đó H là trực tâm của ΔABC.
Suy ra CH là đường cao của ΔABC.
Vậy CH AB.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C

Gọi H là giao điểm của ba đường cao.
Ta có: + = 90°;
+ = 90°;
= (hai góc đối đỉnh).
Do đó = .
Xét ∆ABM vuông tại M và ∆CBP vuông tại P ta có:
= (cmt).
AM = CP (gt).
Do đó ∆ABM = ∆CBP (cạnh góc vuông - góc nhọn).
Suy ra AB = BC (hai cạnh tương ứng) (1)
Chứng minh tương tự ta được ∆BNC = ∆AMC (cạnh góc vuông - góc nhọn)
Suy ra BC = AC (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra AB = BC = AC.
Vậy ∆ABC là tam giác đều.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Vị trí trực tâm của tam giác tù nằm trùng với đỉnh góc vuông.

Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. DH AB;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.