Câu hỏi:

31/07/2022 1,443 Lưu

Ba đường cao của một tam giác tù:

A. Đồng quy tại một điểm nằm ngoài tam giác;
B. Đồng quy tại một điểm nằm trog tam giác;
C. Đồng quy tại một điểm nằm trên đỉnh tam giác;
D. Đồng quy tại một điểm nằm tại trọng tâm tam giác.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Ba đường cao của một tam giác đồng quy tại một điểm nằm ngoài tam giác.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. CH // AB;                      
B. CH HB; 
C. CH AB;
D.Tất cả đáp án trên đều sai.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho ΔABC có đường cao AM và BN cắt nhau tại H. Chọn câu đúng. (ảnh 1)

Xét ΔABC có:

AM là đường cao (gt);

BN là đường cao (gt);

AM và BN cắt nhau tại H.

Do đó H là trực tâm của ΔABC.

Suy ra CH là đường cao của ΔABC.

Vậy CH AB.

Câu 2

A. Tam giác vuông;
B. Tam giác vuông cân;
C. Tam giác đều;
D. Tam giác cân.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho tam giác ABC nhọn có ba đường cao AM, BN, CP. Biết AM = BN = CP. (ảnh 1)

 

Gọi H là giao điểm của ba đường cao.

Ta có: PAH^ + PHA^  = 90°;

 MHC^+ HCM^ = 90°;

PHA^ = MHC^ (hai góc đối đỉnh).

Do đó  PAH^= HCM^

Xét ∆ABM vuông tại M và ∆CBP vuông tại P ta có:

PAH^ = HCM^  (cmt).

AM = CP (gt).

Do đó ∆ABM = ∆CBP (cạnh góc vuông - góc nhọn).

Suy ra AB = BC (hai cạnh tương ứng) (1)

Chứng minh tương tự ta được ∆BNC = ∆AMC (cạnh góc vuông - góc nhọn)

Suy ra BC = AC (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra AB = BC = AC.

Vậy ∆ABC là tam giác đều.

Câu 3

A. Nằm bên trong tam giác;       
B. Nằm bên ngoài tam giác;
C. Nằm trùng với đỉnh góc vuông;
D. Tất cả đáp án trên đều sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. H là trực tâm của ∆ABC;
B. CH là đường cao của ∆ABC;
C. H là trọng tâm của ∆ABC;
D. Phát biểu A, B đều đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP