Câu hỏi:
01/08/2022 1,149
Cho đồ thị hàm số y = f(x) ở Hình 4. Phát biểu nào sau đây là đúng?
A. Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1.
B. Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng – 1.
C. Hàm số đồng biến trên khoảng (– 1; +∞), nghịch biến trên khoảng ( – ∞; – 1).
D. Hàm số đồng biến trên ℝ.
Cho đồ thị hàm số y = f(x) ở Hình 4. Phát biểu nào sau đây là đúng?

A. Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1.
B. Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng – 1.
C. Hàm số đồng biến trên khoảng (– 1; +∞), nghịch biến trên khoảng ( – ∞; – 1).
D. Hàm số đồng biến trên ℝ.
Câu hỏi trong đề: Giải SBT Toán 10 CD Bài 1. Hàm số và đồ thị có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là D
Quan sát đồ thị ta thấy:
Hàm số xác định trên ℝ, và trên ℝ hàm số đi lên nên hàm đồng biến trên ℝ. Do đó C sai và D đúng.
Đồ thị hàm số cắt Ox tại điểm có hoành độ bằng – 1. Do đó A sai.
Đồ thị hàm số cắt Oy tại điểm có tung độ bằng 1. Do đó B sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án đúng là D
Xét công thức x + 2y = 3 ⇔ y = \( - \frac{1}{2}\)x + 3;
Với mỗi giá trị của x ta xác định được duy nhất một giá trị của y nên công thức này y là hàm số của x.
Xét công thức y = \(\sqrt {{x^2} - 2x} \)
Với mỗi giá trị của x ta xác định được duy nhất một giá trị của y nên công thức này y là hàm số của x.
Xét công thức y = \(\frac{1}{x}\)
Với mỗi giá trị x ≠ 0 ta xác định được duy nhất một giá trị của y nên công thức này y là hàm số của x.
Xét công thức: x2 + y2 = 4 ⇔ y2 = – x2 + 4 ⇔ y = \( \pm \sqrt { - {x^2} + 4} \).
Ta thấy ở công thức này, với mỗi giá trị của x thỏa mãn điều kiện – x2 + 4 ≥ 0 ta xác định được 2 giá trị của y. Do đó công thức này không biểu diễn y là hàm số của x.
Lời giải
Lời giải
Đặt y = f(x) = \(\frac{{ - 2}}{x}\).
Tập xác định của hàm số D = ℝ \ {0}.
Lấy x1, x2 ∈ (–∞; 0) thỏa mãn x1 < x2 < 0
Vì x1 < x2 nên \(\frac{2}{{{x_1}}} > \frac{2}{{{x_2}}}\) ⇒ \(\frac{{ - 2}}{{{x_1}}} < \frac{{ - 2}}{{{x_2}}}\) hay f(x1) < f(x2).
Do đó hàm số đồng biến trên khoảng (–∞; 0).
Lấy x1, x2 ∈ (0; +∞) thỏa mãn 0 < x1 < x2
Vì x1 < x2 nên \(\frac{2}{{{x_1}}} > \frac{2}{{{x_2}}}\) ⇒ \(\frac{{ - 2}}{{{x_1}}} < \frac{{ - 2}}{{{x_2}}}\) hay f(x1) < f(x2).
Do đó hàm số đồng biến trên khoảng (0; +∞).
Vậy hàm số đồng biến trên khoảng (–∞; 0) và (0; +∞).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.