Câu hỏi:

01/08/2022 1,139

Cho đồ thị hàm số y = f(x) ở Hình 4. Phát biểu nào sau đây là đúng?

Media VietJack

A. Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1.

B. Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng – 1.

C. Hàm số đồng biến trên khoảng (– 1; +∞), nghịch biến trên khoảng ( – ∞; – 1).

D. Hàm số đồng biến trên ℝ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là D

Quan sát đồ thị ta thấy:

Hàm số xác định trên ℝ, và trên ℝ hàm số đi lên nên hàm đồng biến trên ℝ. Do đó C sai và D đúng.

Đồ thị hàm số cắt Ox tại điểm có hoành độ bằng – 1. Do đó A sai.

Đồ thị hàm số cắt Oy tại điểm có tung độ bằng 1. Do đó B sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là D

Xét công thức x + 2y = 3 y = \( - \frac{1}{2}\)x + 3;

Với mỗi giá trị của x ta xác định được duy nhất một giá trị của y nên công thức này y là hàm số của x.

Xét công thức y = \(\sqrt {{x^2} - 2x} \)

Với mỗi giá trị của x ta xác định được duy nhất một giá trị của y nên công thức này y là hàm số của x.

Xét công thức y = \(\frac{1}{x}\)

Với mỗi giá trị x ≠ 0 ta xác định được duy nhất một giá trị của y nên công thức này y là hàm số của x.

Xét công thức: x2 + y2 = 4 y2 = – x2 + 4 y = \( \pm \sqrt { - {x^2} + 4} \).

Ta thấy ở công thức này, với mỗi giá trị của x thỏa mãn điều kiện – x2 + 4 ≥ 0 ta xác định được 2 giá trị của y. Do đó công thức này không biểu diễn y là hàm số của x.

Lời giải

Lời giải

Đặt y = f(x) = \(\frac{{ - 2}}{x}\).

Tập xác định của hàm số D = ℝ \ {0}.

Lấy x1, x2 (–∞; 0) thỏa mãn x1 < x2 < 0

Vì x1 < x2 nên \(\frac{2}{{{x_1}}} > \frac{2}{{{x_2}}}\) \(\frac{{ - 2}}{{{x_1}}} < \frac{{ - 2}}{{{x_2}}}\) hay f(x1) < f(x2).

Do đó hàm số đồng biến trên khoảng (–∞; 0).

Lấy x1, x2 (0; +∞) thỏa mãn 0 < x1 < x2

Vì x1 < x2 nên \(\frac{2}{{{x_1}}} > \frac{2}{{{x_2}}}\) \(\frac{{ - 2}}{{{x_1}}} < \frac{{ - 2}}{{{x_2}}}\) hay f(x1) < f(x2).

Do đó hàm số đồng biến trên khoảng (0; +∞).

Vậy hàm số đồng biến trên khoảng (–∞; 0) và (0; +∞).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Xác định f(0); f(3).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay