Câu hỏi:
13/07/2024 1,977Quảng cáo
Trả lời:
Lời giải
+) Hình 12a):
Dựa vào hình vẽ, ta thấy:
- Đồ thị hàm số cắt trục tung tại điểm có tung độ – 3 nên c = – 3.
- Điểm đỉnh của parabol có tọa độ (1; – 4) nên ta có:
\( - \frac{b}{{2a}} = 1\) ⇔ b = – 2a
\( - \frac{\Delta }{{4a}} = - 4\)⇔ ∆ = 16a
⇔ b2 – 4ac = 16a
⇔ (– 2a)2 – 4a(– 3) = 16a
⇔ 4a2 + 12a = 16a
⇔ 4a2 – 4a = 0
⇔ 4a(a – 1) = 0
⇔ a = 0 (không thỏa mãn) hoặc a = 1 (thỏa mãn)
⇒ b = – 2a = – 2.1 = – 2.
Vậy hàm số bậc hai cần tìm là y = x2 – 2x – 3.
+) Hình 12b):
Dựa vào hình vẽ, ta thấy:
- Đồ thị hàm số cắt trục tung tại điểm có tung độ 0 nên c = 0.
- Điểm đỉnh của parabol có tọa độ (– 1; 2) nên ta có:
\( - \frac{b}{{2a}} = - 1\) ⇔ b = 2a
\( - \frac{\Delta }{{4a}} = 2\)⇔ ∆ = – 8a
⇔ b2 – 4ac = – 8a
⇔ (2a)2 – 4a.0 = – 8a
⇔ 4a2 = – 8a
⇔ 4a2 + 8a = 0
⇔ 4a(a + 2) = 0
⇔ a = 0 (không thỏa mãn) hoặc a = – 2 (thỏa mãn)
⇒ b = 2a = 2.(– 2) = – 4.
Vậy hàm số bậc hai cần tìm là y = – 2x2 – 4x.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 100
Đã bán 321
Đã bán 218
Đã bán 1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hàm số f(x) = 2x2 + 8x + 8. Phát biểu nào sau đây là đúng?
A. Hàm số đồng biến trên khoảng (– 4; +∞), nghịch biến trên khoảng (–∞; – 4).
B. Hàm số đồng biến trên khoảng (– 2; +∞), nghịch biến trên khoảng (–∞; – 2).
C. Hàm số đồng biến trên khoảng (–∞; – 2), nghịch biến trên khoảng (– 2; +∞).
D. Hàm số đồng biến trên khoảng (–∞; – 4), nghịch biến trên khoảng (– 4; +∞).
Câu 5:
Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau:
y = 4x2 + 6x – 5;
Câu 6:
Xác định parabol y = ax2 – bx + 1 trong mỗi trường hợp sau:
Đi qua hai điểm M(1; – 2) và N(– 2; 19).
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận