Câu hỏi:

01/08/2022 3,637

Trong các phát biểu sau, phát biểu nào đúng?

A. Tập nghiệm của phương trình \(\sqrt {f(x)} = \sqrt {g(x)} \)là tập nghiệm của phương trình f(x) = g(x).

B. Tập nghiệm của phương trình \(\sqrt {f(x)} = \sqrt {g(x)} \)là tập nghiệm của phương trình [f(x)]2 = [g(x)]2.

C. Mọi nghiệm của phương trình f(x) = g(x) đều là nghiệm của phương trình \(\sqrt {f(x)} = \sqrt {g(x)} \)

D. Tập nghiệm của phương trình \(\sqrt {f(x)} = \sqrt {g(x)} \)là tập nghiệm của phương trình f(x) = g(x) thỏa mãn bất phương trình f(x) ≥ 0 (hoặc g(x) ≥ 0).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là D

Tập nghiệm của phương trình \(\sqrt {f(x)} = \sqrt {g(x)} \)là tập nghiệm của phương trình f(x) = g(x) thỏa mãn bất phương trình f(x) ≥ 0 (hoặc g(x) ≥ 0).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đặt CH = x (x ≥ 0). Khi đó BC = 1 400 – x.

Xét tam giác AHC vuông tại H, có:

AH2 + HC2 = AC2

AC2 = 3002 + x2

AC = \(\sqrt {{x^2} + 90\,000} \)

Thời gian thuyền đi từ A đến C là: \(\frac{{\sqrt {{x^2} + 90\,000} }}{3}\) (giờ)

Thời gian người đi bộ đi từ B đến C là \(\frac{{1\,400 - x}}{6}\) (giờ)

Để hai người đến cùng lúc thì mỗi người cùng di chuyển về vị trí C nên ta có:

\(\frac{{\sqrt {{x^2} + 90\,000} }}{3} = \,\frac{{1\,400 - x}}{6}\)

\(2\sqrt {{x^2} + 90\,000} = \,1400 - x\) (điều kiện x ≤ 1 400)

4(x2 + 90 000) = 1 960 000 – 2 800x + x2

3x2 + 2 800x – 1 600 000 = 0

x = 400 (TMĐK) hoặc x = \( - \frac{{4000}}{3}\) (không TMĐK)

CB = 1 400 – x = 1 400 – 400 = 1 000 (m).

Vậy khoảng cách CB = 1 000 m.

Lời giải

Lời giải

Media VietJack

Đặt tọa độ các đỉnh của hình chữ nhật là ABCD.

Vì ABCD nội tiếp hình tròn nên AC là đường kính. Do đó AC = 50 m.

Gọi chiều dài của hình chữ nhật là x (m) (x > 0).

Khi đó AB = DC = x(m)

Xét tam giác ABC vuông tại B, có:

AC2 = AB2 + BC2 (định lý py – ta – go)

502 = x2 + BC2

BC2 = 2 500 – x2

BC = \(\sqrt {2500 - {x^2}} \)

Tổng quãng đường đi xung quanh vườn chính là chu vi hình chữ nhật và bằng 140m, nên ta có: 2(x + \(\sqrt {2500 - {x^2}} \)) = 140

\(\sqrt {2500 - {x^2}} \) = 70 – x (điều kiện x ≤ 70)

2 500 – x2 = 4 900 – 140x + x2

2x2 – 140x + 2 400 = 0

x = 40 (TM) hoặc x = 30 (TM)

Nếu một cạnh bằng 40m thì cạnh còn lại là 30m, nếu một cạnh bằng 30m thì cạnh còn lại là 40m.

Vậy kích thước của hình chữ nhật là 40m và 30m.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP