Câu hỏi:

11/07/2024 1,472

Để leo lên một bức tường, bác Dũng dùng một chiếc thang cao hơn bức tường đó 2m. Ban đầu bác Dũng đặt chiếc thang mà đầu trên của chiếc thang đó vừa chạm đúng vào mép trên của bức tường (Hình 21a). Sau đó, bác Dũng dịch chuyển chân thang vào gần bức tường thêm 1m thì bác Dũng nhận thấy thang tạo với mặt đất một góc 45° (Hình 21b). Bức tường cao bao nhiêu mét?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

+) Hình 21a):

Đặt AC = x (m). Khi đó AB = x + 2

Xét tam giác ABC vuông tại C, có AC = x, AB = x + 2

Áp dụng định lí py – ta – go ta được:

AB2 = AC2 + BC2

(x + 2)2 = x2 + BC2

BC2 = (x + 2)2 – x2

BC2 = 4x + 4

BC = \(\sqrt {4x + 4} \)

AC là chiều cao của bức tường nên AC = DG = x.

DG = BC – 1 = \(\sqrt {4x + 4} \) - 1

Xét tam giác DGE vuông tại G, có:

tanE = \(\frac{{DG}}{{GE}}\)

tan45° = \( = \frac{x}{{\sqrt {4x + 4} - 1}}\)

1 = \( = \frac{x}{{\sqrt {4x + 4} - 1}}\)

\(\sqrt {4x + 4} \) – 1 = x

\(\sqrt {4x + 4} \) = x + 1 (điều kiện x ≥ – 1)

x2 + 2x + 1 = 4x + 4

x2 – 2x – 3 = 0

x = 3 (thỏa mãn) và x = – 1 (không thỏa mãn)

Vậy bức tường cao 3 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đặt CH = x (x ≥ 0). Khi đó BC = 1 400 – x.

Xét tam giác AHC vuông tại H, có:

AH2 + HC2 = AC2

AC2 = 3002 + x2

AC = \(\sqrt {{x^2} + 90\,000} \)

Thời gian thuyền đi từ A đến C là: \(\frac{{\sqrt {{x^2} + 90\,000} }}{3}\) (giờ)

Thời gian người đi bộ đi từ B đến C là \(\frac{{1\,400 - x}}{6}\) (giờ)

Để hai người đến cùng lúc thì mỗi người cùng di chuyển về vị trí C nên ta có:

\(\frac{{\sqrt {{x^2} + 90\,000} }}{3} = \,\frac{{1\,400 - x}}{6}\)

\(2\sqrt {{x^2} + 90\,000} = \,1400 - x\) (điều kiện x ≤ 1 400)

4(x2 + 90 000) = 1 960 000 – 2 800x + x2

3x2 + 2 800x – 1 600 000 = 0

x = 400 (TMĐK) hoặc x = \( - \frac{{4000}}{3}\) (không TMĐK)

CB = 1 400 – x = 1 400 – 400 = 1 000 (m).

Vậy khoảng cách CB = 1 000 m.

Câu 4

\(\sqrt {2x - 1} = 3x - 4\);

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay