Câu hỏi:

12/07/2024 1,535

Cho 2 hàm số y=23x+2;y=32x+2

a) Vẽ đồ thị hai hàm số. Tìm tọa độ giao điểm

b) Một đường thẳng song song với trục Ox, cắt trục tung Oy tại điểm có tung độ bằng 1, cắt đường thẳng y=32x+2 và y=32x+2 tại 2 điểm M, N. Tìm tọa độ hai điểm M, .N

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Học sinh tự vẽ hai đồ thị hàm số

Ta có phương trình hoành độ giao điểm là :

23x+2=32x+2136x=0x=0y=2

Vậy tọa độ giao điểm (0; 2)

b) Ta có yM=132x+2=1xM=23M23;1

Cắt trục tung tại tung độ bằng 1yN=1

xN=32.1+2=12N12;1

Vậy M23;1;N12;1

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ điểm A ở ngoài đường tròn (O; R), vẽ tiếp tuyến AB (B là tiếp điểm), C (ảnh 1)

a) Xét ΔOBAΔOCA có: OB=OC=R,AB=AC(gt),OAchungΔOBA=ΔOCA(c.c.c)

OCA^=OBA^ (hai góc tương ứng) mà OBA^=900OCA^=900COCAlà tiếp tuyến của (O)

b) Vì ODCE tại M M là trung điểm của CEOD là đường trung trực của CEDC=DE

Xét ΔOCDΔOEDOE=OC=R;DC=DE(cmt);ODchung

ΔOCD=ΔOED(c.c.c)OED^=OCD^=900EO nên ED là tiếp tuyến của (O)

Lời giải

Cho nửa đường tròn (O; R) đường kính AB. M là điểm di động trên nửa đường tròn. (ảnh 1)
a) ADCD(gt),BCCD(gt),OMCD (CD là tiếp tuyến của (O))

AD//BC//OM

Hình thang ABCD (AB // CD) có OM//AD//BC,O là trung điểm của ABM là trung điểm của CD

Ta có OM là đường trung bình của hình thang ABCDAD+BC2=OMAD+BC=2R không đổi

b) Vẽ AEBC tại E

Tứ giác ADCE có ADC^=DCE^=CEA^=900 nên là hình chữ nhật CD=AE

AEBCAEAB=2R

Do đó SABCD=AD+BC2.CD=R.CDR.2R=2R2

Nên SABCD2R2,không đổi

Dấu "=" xảy ra EBDC//ABM là giao điểm của đường thẳng vuông góc với AB vẽ từ O và đường tròn (O)

Vậy khi M là giao điểm của đường thẳng vuông góc với OB vẽ từ (O) và đường tròn (O) thì diện tích ABCD lớn nhất

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay