Bài 10. Số nguyên tố. Hợp số. Phân tích một số ra thừa một số nguyên tố
24 người thi tuần này 4.6 4.5 K lượt thi 10 câu hỏi
🔥 Đề thi HOT:
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 1
31 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án
Đề thi cuối học kỳ 2 Toán 6 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
Danh sách câu hỏi:
Lời giải
Lời giải:
41 chỉ có hai ước là 1 và chính nó nên 41 là số nguyên tố. Suy ra 41∈P.
57 có tổng các chữ số là: 5 + 7 = 12 chia hết cho 3 nên 57 chia hết 3, nghĩa là 57 có nhiều hai ước nên 57 là hợp số. Suy ra 57∉ P.
83 chỉ có hai ước là 1 và chính nó nên 83 là số nguyên tố. Suy ra 83∈ P.
95 có chữ số tận cùng là 5 nên 95 chia hết cho 5, nghĩa là 95 có nhiều hơn hai ước nên 95 là hợp số. Suy ra 95∉ P.
Lời giải
Lời giải:
Quan sát vào bảng nguyên tố, ta thấy các số nguyên tố là: 131; 313; 647.
Lời giải
Lời giải:
Lời giải
Lời giải:
a) - Tất cả mọi số chẵn lớn hơn 2 đều là hợp số. Do đó i) đúng.
- Mọi số nguyên tố lớn hơn 2 đều là các số lẻ. Mà tổng hai số lẻ này là một số chẵn lớn hơn 2 nên tổng hai số nguyên tố lớn hơn 2 này chia hết cho 2. Do đó chúng có nhiều hơn hai ước và là một hợp số. Suy ra ii) là đúng.
- Hai hợp số là 25 và 12 có tổng là 25 + 12 = 37 là một số nguyên tố. Do đó iii) là sai.
- Vì có một số nguyên tố chẵn duy nhất là 2 nên tích của số 2 với bất kì số nguyên tố nào khác đều là số chẵn. Chẳng hạn như tích của 2 và của 17 là 2.17 = 34 là một số chẵn. Do đó iv) đúng.
Ta có bảng sau:
Kết luận |
Đáp số |
i. Mỗi số chẵn lớn hơn 2 đều là hợp số. |
Đ |
ii. Tổng của hai số nguyên tố lớn hơn 2 luôn là một hợp số |
Đ |
iii. Tổng của hai hợp số luôn là một hợp số. |
S |
iv. Tích của hai số nguyên tố có thể là một số chẵn |
Đ |
b) Ví dụ minh họa:
Hai hợp số là 25 và 12 có tổng là 25 + 12 = 37 là một số nguyên tố. Do đó iii) là sai.
Lời giải
Lời giải:
a) Ta có: 16 = 5 + 11 = 3 + 13;
18 = 5 + 13 = 7 + 11 ;
20 = 3 + 17 = 7 + 13
b) Ta có: 15 = 3 + 5 + 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
901 Đánh giá
50%
40%
0%
0%
0%