Câu hỏi:

13/07/2024 733 Lưu

Cho tam giác ABC có AB = 4, AC = 6, \(\widehat {BAC} = 60^\circ \). Tính (làm tròn kết quả đến hàng đơn vị):
Bán kính đường tròn ngoại tiếp R;

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải

Áp dụng định lí sin trong tam giác, ta có:

\(\frac{{BC}}{{\sin A}} = 2R\)

\(R = \frac{{BC}}{{2\sin A}} = \frac{{\sqrt {28} }}{{2\sin 60^\circ }} \approx 3\).

Vậy bán kính đường tròn ngoại tiếp tam giác ABC là 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Độ dài cạnh BC và độ lớn góc B;

Xét tam giác ABC, có:

BC2 = AB2 + AC2 – 2AB.AC.cos\(\widehat {BAC}\)

       = 42 + 62 – 2.4.6.cos60°

       = 42 + 62 – 24

       = 28

BC = \(\sqrt {28} \).

Áp dụng định lí sin trong tam giác ABC ta được:

\(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}}\)

\(\sin B = \frac{{6.\sin 60^\circ }}{{\sqrt {28} }} \approx 0,98\)

\(\widehat B \approx 79^\circ \).

Vậy BC = \(\sqrt {28} \) và \(\widehat B \approx 79^\circ \).

Lời giải

Lời giải

\(\left( {\overrightarrow a + 2\overrightarrow b } \right)\left( {2\overrightarrow a - \overrightarrow b } \right) = 2{\overrightarrow a ^2} - \overrightarrow a .\overrightarrow b + 4\overrightarrow a .\overrightarrow b - 2{\overrightarrow b ^2} = 2{\overrightarrow a ^2} + 3\overrightarrow a .\overrightarrow b - 2{\overrightarrow b ^2}\)

\( = 2{\overrightarrow a ^2} + 3\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.cos\left( {\overrightarrow a ,\overrightarrow b } \right) - 2{\overrightarrow b ^2}\)

\( = {2.4^2} + 3.4.5.cos135^\circ - {2.5^2} = - 18 - 30\sqrt 2 \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP