Câu hỏi:
13/07/2024 2,395Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
\(\left( {\overrightarrow a + 2\overrightarrow b } \right)\left( {2\overrightarrow a - \overrightarrow b } \right) = 2{\overrightarrow a ^2} - \overrightarrow a .\overrightarrow b + 4\overrightarrow a .\overrightarrow b - 2{\overrightarrow b ^2} = 2{\overrightarrow a ^2} + 3\overrightarrow a .\overrightarrow b - 2{\overrightarrow b ^2}\)
\( = 2{\overrightarrow a ^2} + 3\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.cos\left( {\overrightarrow a ,\overrightarrow b } \right) - 2{\overrightarrow b ^2}\)
\( = {2.4^2} + 3.4.5.cos135^\circ - {2.5^2} = - 18 - 30\sqrt 2 \)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có AB = 4, AC = 6, \(\widehat {BAC} = 60^\circ \). Tính (làm tròn kết quả đến hàng đơn vị):
Độ dài cạnh BC và độ lớn góc B;
Câu 2:
Cho góc nhọn α. Biểu thức tanα . tan(90°– α) bằng:
A. tanα + cotα.
B. tan2α
C. 1.
D. tan2α + cot2α.
Câu 3:
Câu 4:
Câu 5:
Cho góc nhọn α. Biểu thức (sinα . cotα)2 + (cosα . tanα)2 bằng:
A. 2.
B. tan2α + cot2α.
C. 1.
D. sinα + cosα.
Câu 6:
Cho tam giác ABC có AB = 4, AC = 6, \(\widehat {BAC} = 60^\circ \). Tính (làm tròn kết quả đến hàng đơn vị):
\(\overrightarrow {AB} .\overrightarrow {AC} ,\overrightarrow {AM} .\overrightarrow {AC} \) với M là trung điểm của BC.
về câu hỏi!