Câu hỏi:

13/07/2024 395

Một người quan sát đứng ở bờ sông muốn đo độ rộng của khúc sông chỗ chảy qua vị trí đứng (khúc sông tương đối thẳng, có thể xem hai bờ sông song song).

Media VietJack

Từ vị trí đang đứng A, người đó đo được góc nghiêng α = 35° so với bờ sông tới một vị trí C quan sát được ở phía bờ bên kia. Sau đi dọc bờ sông đến vị trí B cách A một khoảng d = 50m và tiếp tục đo được góc nghiêng β = 65° so với bờ sông tới vị trí C đã chọn (Hình 53). Hỏi độ rộng của con sông chỗ chảy qua vị trí người quan sát đang đứng là bao nhiêu mét (làm tròn kết quả đến hàng phần trăm)?

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Kẻ CH vuông góc với bờ AB.

Xét tam giác ABC, có:

\(\widehat {ABC} + \widehat {BAC} + \widehat {ACB} = 180^\circ \)

\(\widehat {ACB} = 180^\circ - \left( {\widehat {ABC} + \widehat {BAC}} \right) = 180^\circ - \left( {35^\circ + 115^\circ } \right) = 30^\circ \)

Áp dụng định lí sin trong tam giác, ta được:

\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {CAB}}}\)

\(\frac{{50}}{{\sin 30^\circ }} = \frac{{BC}}{{\sin 35^\circ }}\)

\(BC = \frac{{50\sin 35^\circ }}{{\sin 30^\circ }} \approx 57,36\)

Xét tam giác CHB vuông tại B, có:

\(\sin \widehat {CBH} = \frac{{CH}}{{BC}} \Leftrightarrow CH = \sin \widehat {CBH}.BC \approx \sin 65^\circ .57,36 \approx 51,98\).

Vậy độ rộng của con sông chỗ chảy qua vị trí người quan sát khoảng 51,98 mét.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có AB = 4, AC = 6, \(\widehat {BAC} = 60^\circ \). Tính (làm tròn kết quả đến hàng đơn vị):

Độ dài cạnh BC và độ lớn góc B;

Xem đáp án » 13/07/2024 7,825

Câu 2:

Cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) và \(\left| {\overrightarrow a } \right| = 4,\left| {\overrightarrow b } \right| = 5,\left( {\overrightarrow a ,\overrightarrow b } \right) = 135^\circ \). Tính \(\left( {\overrightarrow a + 2\overrightarrow b } \right)\left( {2\overrightarrow a - \overrightarrow b } \right)\).

Xem đáp án » 13/07/2024 4,960

Câu 3:

Cho tam giác ABC có AB = 4, AC = 5, \(\widehat {BAC} = 120^\circ \). Điểm M là trung điểm của đoạn thẳng BC, điểm D thỏa mãn \(\overrightarrow {AD} = \frac{2}{5}\overrightarrow {AC} \). Tính tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \) và chứng minh AM BD.

Xem đáp án » 13/07/2024 4,353

Câu 4:

Cho góc nhọn α. Biểu thức tanα . tan(90°– α) bằng:

A. tanα + cotα.

B. tan2α

C. 1.

D. tan2α + cot2α.

Xem đáp án » 13/07/2024 3,986

Câu 5:

Cho tam giác ABC. Chứng minh rằng \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{1}{2}\left( {A{B^2} + A{C^2} - B{C^2}} \right)\).

Xem đáp án » 13/07/2024 3,531

Câu 6:

Cho góc nhọn α. Biểu thức (sinα . cotα)2 + (cosα . tanα)2 bằng:

A. 2.

B. tan2α + cot2α.

C. 1.

D. sinα + cosα.

Xem đáp án » 13/07/2024 2,300

Câu 7:

Cho tam giác ABC có AB = 5, BC = 6, CA = 7. Tính:

Độ dài đường trung tuyến AM.

Xem đáp án » 13/07/2024 2,285

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store