Câu hỏi:

13/07/2024 454

Một người quan sát đứng ở bờ sông muốn đo độ rộng của khúc sông chỗ chảy qua vị trí đứng (khúc sông tương đối thẳng, có thể xem hai bờ sông song song).

Media VietJack

Từ vị trí đang đứng A, người đó đo được góc nghiêng α = 35° so với bờ sông tới một vị trí C quan sát được ở phía bờ bên kia. Sau đi dọc bờ sông đến vị trí B cách A một khoảng d = 50m và tiếp tục đo được góc nghiêng β = 65° so với bờ sông tới vị trí C đã chọn (Hình 53). Hỏi độ rộng của con sông chỗ chảy qua vị trí người quan sát đang đứng là bao nhiêu mét (làm tròn kết quả đến hàng phần trăm)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Kẻ CH vuông góc với bờ AB.

Xét tam giác ABC, có:

\(\widehat {ABC} + \widehat {BAC} + \widehat {ACB} = 180^\circ \)

\(\widehat {ACB} = 180^\circ - \left( {\widehat {ABC} + \widehat {BAC}} \right) = 180^\circ - \left( {35^\circ + 115^\circ } \right) = 30^\circ \)

Áp dụng định lí sin trong tam giác, ta được:

\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {CAB}}}\)

\(\frac{{50}}{{\sin 30^\circ }} = \frac{{BC}}{{\sin 35^\circ }}\)

\(BC = \frac{{50\sin 35^\circ }}{{\sin 30^\circ }} \approx 57,36\)

Xét tam giác CHB vuông tại B, có:

\(\sin \widehat {CBH} = \frac{{CH}}{{BC}} \Leftrightarrow CH = \sin \widehat {CBH}.BC \approx \sin 65^\circ .57,36 \approx 51,98\).

Vậy độ rộng của con sông chỗ chảy qua vị trí người quan sát khoảng 51,98 mét.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có AB = 4, AC = 6, \(\widehat {BAC} = 60^\circ \). Tính (làm tròn kết quả đến hàng đơn vị):

Độ dài cạnh BC và độ lớn góc B;

Xem đáp án » 13/07/2024 8,824

Câu 2:

Cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) và \(\left| {\overrightarrow a } \right| = 4,\left| {\overrightarrow b } \right| = 5,\left( {\overrightarrow a ,\overrightarrow b } \right) = 135^\circ \). Tính \(\left( {\overrightarrow a + 2\overrightarrow b } \right)\left( {2\overrightarrow a - \overrightarrow b } \right)\).

Xem đáp án » 13/07/2024 5,540

Câu 3:

Cho tam giác ABC có AB = 4, AC = 5, \(\widehat {BAC} = 120^\circ \). Điểm M là trung điểm của đoạn thẳng BC, điểm D thỏa mãn \(\overrightarrow {AD} = \frac{2}{5}\overrightarrow {AC} \). Tính tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \) và chứng minh AM BD.

Xem đáp án » 13/07/2024 4,597

Câu 4:

Cho góc nhọn α. Biểu thức tanα . tan(90°– α) bằng:

A. tanα + cotα.

B. tan2α

C. 1.

D. tan2α + cot2α.

Xem đáp án » 13/07/2024 4,444

Câu 5:

Cho tam giác ABC. Chứng minh rằng \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{1}{2}\left( {A{B^2} + A{C^2} - B{C^2}} \right)\).

Xem đáp án » 13/07/2024 3,806

Câu 6:

Cho tam giác ABC có AB = 5, BC = 6, CA = 7. Tính:

Độ dài đường trung tuyến AM.

Xem đáp án » 13/07/2024 3,152

Câu 7:

Cho góc nhọn α. Biểu thức (sinα . cotα)2 + (cosα . tanα)2 bằng:

A. 2.

B. tan2α + cot2α.

C. 1.

D. sinα + cosα.

Xem đáp án » 13/07/2024 2,491
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay