Câu hỏi:
13/07/2024 487
Một người quan sát đứng ở bờ sông muốn đo độ rộng của khúc sông chỗ chảy qua vị trí đứng (khúc sông tương đối thẳng, có thể xem hai bờ sông song song).

Từ vị trí đang đứng A, người đó đo được góc nghiêng α = 35° so với bờ sông tới một vị trí C quan sát được ở phía bờ bên kia. Sau đi dọc bờ sông đến vị trí B cách A một khoảng d = 50m và tiếp tục đo được góc nghiêng β = 65° so với bờ sông tới vị trí C đã chọn (Hình 53). Hỏi độ rộng của con sông chỗ chảy qua vị trí người quan sát đang đứng là bao nhiêu mét (làm tròn kết quả đến hàng phần trăm)?
Một người quan sát đứng ở bờ sông muốn đo độ rộng của khúc sông chỗ chảy qua vị trí đứng (khúc sông tương đối thẳng, có thể xem hai bờ sông song song).
Từ vị trí đang đứng A, người đó đo được góc nghiêng α = 35° so với bờ sông tới một vị trí C quan sát được ở phía bờ bên kia. Sau đi dọc bờ sông đến vị trí B cách A một khoảng d = 50m và tiếp tục đo được góc nghiêng β = 65° so với bờ sông tới vị trí C đã chọn (Hình 53). Hỏi độ rộng của con sông chỗ chảy qua vị trí người quan sát đang đứng là bao nhiêu mét (làm tròn kết quả đến hàng phần trăm)?
Câu hỏi trong đề: Giải SBT Toán 10 CD Bài tập cuối chương 4 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Kẻ CH vuông góc với bờ AB.
Xét tam giác ABC, có:
\(\widehat {ABC} + \widehat {BAC} + \widehat {ACB} = 180^\circ \)
⇒ \(\widehat {ACB} = 180^\circ - \left( {\widehat {ABC} + \widehat {BAC}} \right) = 180^\circ - \left( {35^\circ + 115^\circ } \right) = 30^\circ \)
Áp dụng định lí sin trong tam giác, ta được:
\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {CAB}}}\)
⇔\(\frac{{50}}{{\sin 30^\circ }} = \frac{{BC}}{{\sin 35^\circ }}\)
⇔\(BC = \frac{{50\sin 35^\circ }}{{\sin 30^\circ }} \approx 57,36\)
Xét tam giác CHB vuông tại B, có:
\(\sin \widehat {CBH} = \frac{{CH}}{{BC}} \Leftrightarrow CH = \sin \widehat {CBH}.BC \approx \sin 65^\circ .57,36 \approx 51,98\).
Vậy độ rộng của con sông chỗ chảy qua vị trí người quan sát khoảng 51,98 mét.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Độ dài cạnh BC và độ lớn góc B;
Xét tam giác ABC, có:
BC2 = AB2 + AC2 – 2AB.AC.cos\(\widehat {BAC}\)
= 42 + 62 – 2.4.6.cos60°
= 42 + 62 – 24
= 28
⇔ BC = \(\sqrt {28} \).
Áp dụng định lí sin trong tam giác ABC ta được:
\(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}}\)
⇔ \(\sin B = \frac{{6.\sin 60^\circ }}{{\sqrt {28} }} \approx 0,98\)
⇔ \(\widehat B \approx 79^\circ \).
Vậy BC = \(\sqrt {28} \) và \(\widehat B \approx 79^\circ \).
Lời giải
Lời giải
\(\left( {\overrightarrow a + 2\overrightarrow b } \right)\left( {2\overrightarrow a - \overrightarrow b } \right) = 2{\overrightarrow a ^2} - \overrightarrow a .\overrightarrow b + 4\overrightarrow a .\overrightarrow b - 2{\overrightarrow b ^2} = 2{\overrightarrow a ^2} + 3\overrightarrow a .\overrightarrow b - 2{\overrightarrow b ^2}\)
\( = 2{\overrightarrow a ^2} + 3\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.cos\left( {\overrightarrow a ,\overrightarrow b } \right) - 2{\overrightarrow b ^2}\)
\( = {2.4^2} + 3.4.5.cos135^\circ - {2.5^2} = - 18 - 30\sqrt 2 \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.