Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn D.
Ta đi xét các phương án
+ Phương án A
Ta có: VP = a cosC + c cosA
+ Phương án B
Ta có: a = 2RsinA, b = 2RsinB, c = 2RsinC
mà b = a cosC + c cosA ⇒ 2RsinB = 2RsinA cosC + 2RsinC cosA
⇒ sinB = sinA cosC + sinC cosA
+ Phương án C
Ta có: S = ½. b.hb = ½.a.c.sinB nên b.hb= acsinB
Mà: a = 2RsinA, b = 2RsinB, c = 2RsinC
Suy ra: 2RsinBhb= 2RsinA.2RsinC.sinB ⇒ hb = 2RsinA sinC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có A(-1; 1), B(3; 1), C(2; 4). Tìm tọa độ trực tâm H của tam giác ABC?
Câu 2:
Cho tam giác ABC có A(-1; 1), B(3; 1), C(2; 4) . Tìm tọa độ điểm I là tâm đường tròn ngoại tiếp tam giác ABC.
Câu 3:
Cho tam giác ABC. Tính P = sinA. cos(B + C) + cos A.sin(B + C).
Câu 4:
Cho tam giác đều ABC, độ dài cạnh là 3a . Lấy M, N, P lần lượt nằm trên các cạnh BC, CA, AB sao cho BM = a; CN = 2a và AP = x . Tính x để AM vuông góc với PN.
Câu 5:
Cho biết 3cosα – sinα = 1; 00 < α < 900. Giá trị của tanα bằng:
Câu 6:
Cho tam giác ABC có cạnh AB = 14, góc C = 1200, tổng hai cạnh còn lại là 16. Tính độ dài hai cạnh còn lại.
Câu 7:
Cho tam giác ABC. Tính P = cosA.cos( B + C) – sinA.sin(B + C).
về câu hỏi!