Câu hỏi:
21/01/2021 17,310Tính giá trị biểu thức P = sin300cos150 + sin1500.cos1650
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Chọn B.
Hai góc 300 và 1500 bù nhau nên sin300 = sin1500
Hai góc 150 và 1650 bù nhau nên cos150 = -cos 1650.
Do đó P = sin300cos150+ sin1500.cos1650 = sin1500(-cos1650 + cos1650) = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có A(-1; 1), B(3; 1), C(2; 4). Tìm tọa độ trực tâm H của tam giác ABC?
Câu 2:
Cho tam giác ABC có A(-1; 1), B(3; 1), C(2; 4) . Tìm tọa độ điểm I là tâm đường tròn ngoại tiếp tam giác ABC.
Câu 3:
Cho tam giác ABC. Tính P = sinA. cos(B + C) + cos A.sin(B + C).
Câu 4:
Cho tam giác đều ABC, độ dài cạnh là 3a . Lấy M, N, P lần lượt nằm trên các cạnh BC, CA, AB sao cho BM = a; CN = 2a và AP = x . Tính x để AM vuông góc với PN.
Câu 5:
Cho biết 3cosα – sinα = 1; 00 < α < 900. Giá trị của tanα bằng:
Câu 6:
Cho tam giác ABC. Tính P = cosA.cos( B + C) – sinA.sin(B + C).
Câu 7:
Cho tam giác ABC có cạnh AB = 14, góc C = 1200, tổng hai cạnh còn lại là 16. Tính độ dài hai cạnh còn lại.
về câu hỏi!