Câu hỏi:
19/12/2019 25,551Cho tam giác ABC. Tính P = cosA.cos( B + C) – sinA.sin(B + C).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn C.
Giả sử A = α; B + C = β. Biểu thức trở thành P = cosα.cosβ - sinα.sinβ.
Trong tam giác ABC có A + B + C = 1800 nên α + β = 1800.
Do hai góc α và β bù nhau nên sinα = sinβ và cosα = - cosβ.
Do đó P = cosα.cosβ- sinα.sinβ = -cos2α - sin2α = -1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có A(-1; 1), B(3; 1), C(2; 4). Tìm tọa độ trực tâm H của tam giác ABC?
Câu 2:
Cho tam giác ABC có A(-1; 1), B(3; 1), C(2; 4) . Tìm tọa độ điểm I là tâm đường tròn ngoại tiếp tam giác ABC.
Câu 3:
Cho tam giác ABC. Tính P = sinA. cos(B + C) + cos A.sin(B + C).
Câu 4:
Cho tam giác đều ABC, độ dài cạnh là 3a . Lấy M, N, P lần lượt nằm trên các cạnh BC, CA, AB sao cho BM = a; CN = 2a và AP = x . Tính x để AM vuông góc với PN.
Câu 5:
Cho biết 3cosα – sinα = 1; 00 < α < 900. Giá trị của tanα bằng:
Câu 6:
Cho hình vuông ABCD, M là điểm nằm trên đoạn thẳng AC sao cho AM = AC/4, N là trung điểm của đoạn thẳng DC. Tìm mệnh đề đúng?
Câu 7:
Cho tam giác ABC có cạnh AB = 14, góc C = 1200, tổng hai cạnh còn lại là 16. Tính độ dài hai cạnh còn lại.
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
80 câu trắc nghiệm Vectơ cơ bản (P1)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
50 câu trắc nghiệm Thống kê nâng cao (P1)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
về câu hỏi!