Câu hỏi:

17/08/2022 806

Cho ∆ABC đều có ba đường trung tuyến AD, BE, CF cắt nhau tại G. Đoạn thẳng BE bằng với đoạn thẳng nào trong các đoạn thẳng sau:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Media VietJack

Ta có BE, CF là hai đường trung tuyến của ∆ABC.

Nên E, F lần lượt là trung điểm của AC và AB

Suy ra CE = 12AC và BF = 12AB.

Mà AB = AC (do ∆ABC đều).

Do đó 12AB=12AC.

Khi đó ta có CE = BF.

Xét ∆BCE và ∆CBF, có:

BC là cạnh chung.

CE = BF (chứng minh trên).

FBC^=ECB^ (do ∆ABC đều).

Do đó ∆BCE = ∆CBF (c.g.c).

Suy ra BE = CF (hai cạnh tương ứng).

Chứng minh tương tự, ta được AD = BE.

Suy ra BE = AD = CF.

Do đó đáp án A, B đều đúng.

Đáp án C sai vì:

Xét ∆ABD và ∆ACD, có:

AD là cạnh chung.

BD = CD (AD là đường trung tuyến của ∆ABC).

AB = AC (∆ABC đều).

Do đó ∆ABD = ∆ACD (c.c.c).

Suy ra ADB^=ADC^ (cặp góc tương ứng).

ADB^+ADC^=180° (hai góc kề bù).

Do đó ADB^=ADC^=180°:2=90°.

Khi đó ta có AD ⊥ BC.

Do đó đoạn thẳng AD là đường vuông góc kẻ từ điểm A đến đường thẳng BC và AB là một đường xiên kẻ từ điểm A đến đường thẳng BC.

Suy ra AD < AB.

Do đó đáp án C sai.

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ∆ABC có hai đường trung tuyến BE và CF cắt nhau tại G. Biết BE = CF. Khẳng định nào sau đây đúng nhất?

Xem đáp án » 17/08/2022 1,982

Câu 2:

Cho ∆ABC có hai đường trung tuyến BD, CE cắt nhau tại G. Trên tia đối của tia DB, lấy điểm M sao cho DM = DG. Trên tia đối của tia EG lấy điểm N sao cho EN = EG. Khẳng định nào sau đây đúng nhất?

Xem đáp án » 18/08/2022 1,815

Câu 3:

Cho ∆ABC, D là trung điểm của AC. Trên cạnh BD lấy điểm E sao cho BE = 2ED. Lấy điểm F thuộc tia đối của tia DE sao cho BF = 2BE. Gọi K là trung điểm của CF và G là giao điểm của EK với AC. Khẳng định nào sau đây đúng nhất?

Xem đáp án » 18/08/2022 1,676

Câu 4:

Cho ∆ABC, đường trung tuyến AD. Trên tia đối của tia DA lấy điểm K sao cho DK=13AD. Qua B vẽ một đường thẳng song song với CK, cắt AC tại M. Gọi G là giao điểm của BM và AD. Khẳng định nào sau đây đúng?

Xem đáp án » 17/08/2022 1,460

Câu 5:

Cho ∆ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. Khẳng định nào sau đây đúng nhất?

Xem đáp án » 18/08/2022 1,446

Câu 6:

Cho ∆ABC cân tại A, có AM là đường trung tuyến. Khẳng định nào sau đây sai?

Xem đáp án » 17/08/2022 898

Câu 7:

Cho ∆ABC, hai đường trung tuyến BM và CN cắt nhau tại G. Trên tia GB và GC lấy các điểm F và E sao cho G là trung điểm của FM, đồng thời là trung điểm của EN. Khẳng định nào sau đây sai?

Xem đáp án » 18/08/2022 895

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store