Câu hỏi:
12/07/2024 388Cho tam giác ABC cân tại A. Chứng minh rằng hai đường cao BE và CF bằng nhau.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
GT |
∆ABC cân tại A, BE ⊥ AC, E ∈ AC, CF ⊥ AB, F ∈ AB. |
KL |
BE = CF. |
Ta thấy ∆BEC và ∆CFB lần lượt vuông tại đỉnh E, F và có:
BC là cạnh chung
(do ∆ABC cân tại A).
Vậy ∆BEC = ∆CFB (cạnh huyền – góc nhọn).
Do đó BE = CF.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.
a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC cân tại A.
Câu 2:
Cho tam giác ABC cân tại A và M là trung điểm của đoạn thẳng BC. Chứng minh AM vuông góc với BC và AM là tia phân giác của góc BAC.
Câu 3:
b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.
Câu 4:
Đường thẳng d là đường trung trực của đoạn thẳng AB khi và chỉ khi:
A. d đi qua trung điểm của AB;
B. d là trục đối xứng của đoạn thẳng AB;
C. d vuông góc với AB;
D. d vuông góc với AB tại trung điểm của AB.
Câu 5:
c) Tam giác vuông có một góc nhọn bằng 45o là tam giác vuông cân.
Câu 6:
Tam giác vuông có hai cạnh bằng nhau được gọi là tam giác vuông cân.
Hãy giải thích các khẳng định sau:
a) Tam giác vuông cân thì cân tại đỉnh góc vuông;
Câu 7:
Cho tam giác ABC và điểm D nằm trên cạnh BC sao cho AD vuông góc với BC và AD là phân giác góc BAC. Chứng minh tam giác ABC cân tại A.
về câu hỏi!