Câu hỏi:

13/07/2024 1,315

Cho tam giác ABC có A(3; 7), B(-2; 2), C(6; 1). Viết phương trình tổng quát của các đường cao của tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi các đường cao của tam giác ABC lần lượt là AD, BE, CF.

Đường thẳng AD vuông góc BC nên AD có vectơ pháp tuyến là BC=8;1 .

Và AD đi qua A(3; 7) nên phương trình tổng quát của đường thẳng AD là:

8(x – 3) – (y – 7) = 0 hay 8x – y – 17 = 0.

Đường thẳng BE vuông góc AC nên BE có vectơ pháp tuyến là AC=3;6=31;2 .

Và BE đi qua B( – 2; 2) nên phương trình tổng quát của đường thẳng BE là:

(x + 2) – 2(y – 2) = 0 hay x – 2y + 6 = 0.

Đường thẳng CF vuông góc AB nên CF có vectơ pháp tuyến là AB=5;5=51;1 .

Và CF đi qua C(6; 1) nên phương trình tổng quát của đường thẳng CF là:

(x – 6) + (y – 1) = 0 hay x + y – 7 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Do N thuộc đường thẳng ∆ nên N(m; 4 – 2m).

Suy ra NA=2m;2m2 , NB=7m;2m+1  và  NC=4m;2m9

NA+NB+NC=93m;6m10

NA+NB+NC=93m2+6m102

Gọi  A=93m2+6m102

A=45m2174m+181=45m29152+645645

Suy ra GTNN của NA+NB+NC85  đạt được khi  m=2915

Hay N2915;215  .

Lời giải

b) Do N nằm trên ∆ nên N(4 + m; -1 + 2m).

Suy ra AN=4+m2;1+2m1=2+m;2+2m

AN ngắn nhất khi và chỉ khi N là hình chiếu của A lên ∆.

Khi đó AN  vuông góc với vectơ chỉ phương của ∆:  u=1;2

Hay (2 + m). 1 + (-2 + 2m). 2 = 0

m=25 

Suy ra N225;15  .

Vậy N225;15  .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP