Câu hỏi:

13/07/2024 651

Cho tam giác ABC có A(3; 7), B(-2; 2), C(6; 1). Viết phương trình tổng quát của các đường cao của tam giác ABC.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi các đường cao của tam giác ABC lần lượt là AD, BE, CF.

Đường thẳng AD vuông góc BC nên AD có vectơ pháp tuyến là BC=8;1 .

Và AD đi qua A(3; 7) nên phương trình tổng quát của đường thẳng AD là:

8(x – 3) – (y – 7) = 0 hay 8x – y – 17 = 0.

Đường thẳng BE vuông góc AC nên BE có vectơ pháp tuyến là AC=3;6=31;2 .

Và BE đi qua B( – 2; 2) nên phương trình tổng quát của đường thẳng BE là:

(x + 2) – 2(y – 2) = 0 hay x – 2y + 6 = 0.

Đường thẳng CF vuông góc AB nên CF có vectơ pháp tuyến là AB=5;5=51;1 .

Và CF đi qua C(6; 1) nên phương trình tổng quát của đường thẳng CF là:

(x – 6) + (y – 1) = 0 hay x + y – 7 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

b*) Tìm tọa độ điểm N thuộc ∆ sao cho NA+NB+NC  có giá trị nhỏ nhất.

Xem đáp án » 13/07/2024 7,623

Câu 2:

b) Tìm tọa độ điểm N sao cho đoạn thẳng AN ngắn nhất.

Xem đáp án » 13/07/2024 5,849

Câu 3:

Cho đường thẳng ∆: 2x – 3y + 5 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của ∆?

Xem đáp án » 29/09/2022 3,974

Câu 4:

Cho đường thẳng ∆: x – 3y + 4 = 0. Phương trình nào dưới đây là phương trình tham số của ∆?

Xem đáp án » 29/09/2022 3,618

Câu 5:

Cho tam giác ABC, biết tọa độ trung điểm các cạnh BC, CA, AB lần lượt là M(-1; 1), N(3; 4), P(5; 6).

a) Viết phương trình tham số của các đường thẳng AB, BC, CA.

Xem đáp án » 13/07/2024 2,658

Câu 6:

Cho ba điểm A(- 2; 2), B(7; 5), C(4; - 5) và đường thẳng ∆: 2x + y – 4 = 0.

a) Tìm tọa độ điểm M thuộc ∆ và cách đều hai điểm A và B.

Xem đáp án » 13/07/2024 2,549

Câu 7:

Cho đường thẳng ∆: x=4+ty=1+2t  và điểm A(2; 1). Hai điểm M, N nằm trên ∆.

a) Tìm tọa độ điểm M sao cho  AM=17

Xem đáp án » 13/07/2024 1,694

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store