Câu hỏi:

28/11/2022 2,956 Lưu

Cho hai tam giác ABC và MNP có ABC^=MNP^,ACB^=MPN^. Cần thêm một điều kiện để tam giác ABC và tam giác MNP bằng nhau theo trường hợp góc – cạnh – góc là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Để ΔABC = ∆MNP theo trường hợp góc – cạnh – góc thì hai cặp góc bằng nhau là hai cặp góc kề với cặp cạnh bằng nhau của hai tam giác.

Mà  ABC^=MNP^,  ACB^=MPN^

Lại có ABC^  và ACB^  là hai góc kề cạnh BC;

MNP^ và MPN^  là hai góc kề cạnh NP.

Do đó điều kiện còn thiếu là điều kiện về cạnh, đó là BC = NP.

Vậy ta chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Xét DAMC và DEMB có:

AM = ME (giả thiết),

AMC^=EMB^ (hai góc đối đỉnh),

BM = CM (vì M là trung điểm của BC)

Do đó ∆AMC = ∆EMB (c.g.c).

Suy ra AC = EB (hai cạnh tương ứng) và MAC^=MEB^  (hai góc tương ứng).

MAC^  và MEB^  ở vị trí so le trong nên AC // BE.

Vậy AC = EB và AC song song với EB.

Lời giải

Media VietJack

Xét tam giác ABC có:

B^+C^+BAC^=180° (tổng ba góc trong một tam giác).

Suy ra B^+C^=180°BAC^=180°110°=70° .

Vì E thuộc đường trung trực của AB nên EB = EA.

Do đó tam giác ABE cân tại E nên EAB^=B^ .

Vì F thuộc đường trung trực của AC nên FC = FA.

Do đó tam giác ACF cân tại F nên FAC^=C^ .

Ta có BAE^+EAF^+FAC^=BAC^

Hay B^+EAF^+C^=BAC^

Do đó EAF^=BAC^B^+C^

Suy ra EAF^=110°70°=40° .

Vậy ta chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP