Câu hỏi:
12/07/2024 1,991b) Cho M là một điểm bên trong tam giác ABC. Chứng minh rằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b)
Áp dụng bất đẳng thức tam giác vào tam giác MAB ta có:
MA + MB > AB (5)
Tương tự với các tam giác MBC và MAC ta lần lượt suy ra được:
MB + MC > BC và MA + MC > AC (6).
Từ (5) và (6) ta suy ra được:
(MA + MB) + (MB + MC) + (MA + MC) > AB + BC + AC
Hay 2(MA + MB + MC) > AB + BC + AC
Suy ra
Mặt khác chứng minh tương tự theo a) ta có:
AB + AC > MB + MC; AC + BC > MA + MB; BC + BA > MC + MA.
Từ đó ta suy ra được:
(MA + MB) + (MB + MC) + (MA + MC) < (AC + AB) + (AB + AC) + (BC + BA)
Hay 2(MA + MB + MC) < 2(AB + BC + CA)
Suy ra MA + MB + MC < AB + BC + CA (**)
Từ (*) và (**) ta suy ra:
(đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tam giác ABC có AB = 2 cm, BC = 5 cm, AC = b (cm) với b là một số nguyên. Hỏi b có thể bằng bao nhiêu?
Câu 2:
Cho tam giác có độ dài cạnh lớn nhất bằng 4 cm. Hãy giải thích tại sao chu vi tam giác đó bé hơn 12 cm và lớn hơn 8 cm.
Câu 3:
a) Cho P là một điểm bên trong tam giác ABC. Chứng minh rằng:
AB + AC > PB + PC.
Câu 4:
Tam giác ABC có AB = 2 cm, BC = 3 cm. Đặt CA = b (cm).
a) Chứng minh rằng 1 < b < 5.
Câu 5:
b) Giả sử rằng với 1 < b < 5, có tam giác ABC thỏa mãn AB = 2 cm, BC = 3 cm, CA = b (cm). Với mỗi tam giác đó, hãy sắp xếp ba góc A, B, C theo thứ tự từ bé đến lớn.
về câu hỏi!