Câu hỏi:

12/07/2024 6,280

Cho hai đường thẳng không vuông góc b, c cắt nhau tại điểm A và cho điểm H không thuộc b và c (H.9.47).

Cho hai đường thẳng không vuông góc b, c cắt nhau tại điểm A và cho điểm H không thuộc b và c (H.9.47). (ảnh 1)

Hãy tìm điểm B thuộc b, điểm C thuộc c sao cho tam giác ABC nhận H làm trực tâm.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta thực hiện theo các bước như sau:

Bước 1. Từ H kẻ đường thẳng vuông góc với đường thẳng b và cắt đường thẳng c tại một điểm. Điểm này chính là điểm C.

Cho hai đường thẳng không vuông góc b, c cắt nhau tại điểm A và cho điểm H không thuộc b và c (H.9.47). (ảnh 2)

Bước 2. Từ H kẻ đường thẳng vuông góc với đường thẳng c và cắt đường thẳng b tại một điểm. Điểm này chính là điểm B.

Cho hai đường thẳng không vuông góc b, c cắt nhau tại điểm A và cho điểm H không thuộc b và c (H.9.47). (ảnh 3)

Bước 3. Nối hai điểm B, C ta được tam giác ABC.

Cho hai đường thẳng không vuông góc b, c cắt nhau tại điểm A và cho điểm H không thuộc b và c (H.9.47). (ảnh 4)

 

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có thể coi ba ngôi nhà của ba anh em trong một khu vườn là ba đỉnh của một tam giác (không tù). Họ muốn khoan một giếng chung trong vườn cách đều ba ngôi nhà (H.9.36). Em có thể giúp họ chọn địa điểm để khoan giếng không?

Có thể coi ba ngôi nhà của ba anh em trong một khu vườn là ba đỉnh của một tam giác (không tù) (ảnh 1)

Xem đáp án » 12/07/2024 10,347

Câu 2:

Xét điểm O cách đều ba đỉnh của tam giác ABC. Chứng minh rằng nếu O nằm trên một cạnh của tam giác ABC thì ABC là một tam giác vuông.

Xem đáp án » 12/07/2024 10,329

Câu 3:

a) Có một chi tiết máy (đường viền ngoài là đường tròn) bị gãy (H.9.46). Làm thế nào để xác định được bán kính của đường viền này?

 

a) Có một chi tiết máy (đường viền ngoài là đường tròn) bị gãy (H.9.46). Làm thế nào để xác (ảnh 1)

Xem đáp án » 12/07/2024 6,242

Câu 4:

Gọi H là trực tâm của tam giác ABC không vuông. Tìm trực tâm của các tam giác HBC, HCA, HAB.

Xem đáp án » 12/07/2024 4,903

Câu 5:

a) Chứng minh rằng trong tam giác ABC cân tại A, đường trung trực của cạnh BC là đường cao và cũng là đường phân giác xuất phát từ đỉnh A của tam giác đó.

Xem đáp án » 12/07/2024 4,759

Câu 6:

b) Trên bản đồ, ba khu dân cư được quy hoạch tại ba điểm A, B, C không thẳng hàng. Hãy tìm trên bản đồ đó một điểm M cách đều A, B, C để quy hoạch một trường học.

Xem đáp án » 12/07/2024 4,540
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua