Câu hỏi:

12/07/2024 7,058

Cho hai đường thẳng không vuông góc b, c cắt nhau tại điểm A và cho điểm H không thuộc b và c (H.9.47).

Cho hai đường thẳng không vuông góc b, c cắt nhau tại điểm A và cho điểm H không thuộc b và c (H.9.47). (ảnh 1)

Hãy tìm điểm B thuộc b, điểm C thuộc c sao cho tam giác ABC nhận H làm trực tâm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta thực hiện theo các bước như sau:

Bước 1. Từ H kẻ đường thẳng vuông góc với đường thẳng b và cắt đường thẳng c tại một điểm. Điểm này chính là điểm C.

Cho hai đường thẳng không vuông góc b, c cắt nhau tại điểm A và cho điểm H không thuộc b và c (H.9.47). (ảnh 2)

Bước 2. Từ H kẻ đường thẳng vuông góc với đường thẳng c và cắt đường thẳng b tại một điểm. Điểm này chính là điểm B.

Cho hai đường thẳng không vuông góc b, c cắt nhau tại điểm A và cho điểm H không thuộc b và c (H.9.47). (ảnh 3)

Bước 3. Nối hai điểm B, C ta được tam giác ABC.

Cho hai đường thẳng không vuông góc b, c cắt nhau tại điểm A và cho điểm H không thuộc b và c (H.9.47). (ảnh 4)

 

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có thể coi ba ngôi nhà của ba anh em trong một khu vườn là ba đỉnh của một tam giác (không tù). Họ muốn khoan một giếng chung trong vườn cách đều ba ngôi nhà (H.9.36). Em có thể giúp họ chọn địa điểm để khoan giếng không?

Có thể coi ba ngôi nhà của ba anh em trong một khu vườn là ba đỉnh của một tam giác (không tù) (ảnh 1)

Xem đáp án » 12/07/2024 16,435

Câu 2:

Xét điểm O cách đều ba đỉnh của tam giác ABC. Chứng minh rằng nếu O nằm trên một cạnh của tam giác ABC thì ABC là một tam giác vuông.

Xem đáp án » 12/07/2024 11,571

Câu 3:

a) Có một chi tiết máy (đường viền ngoài là đường tròn) bị gãy (H.9.46). Làm thế nào để xác định được bán kính của đường viền này?

 

a) Có một chi tiết máy (đường viền ngoài là đường tròn) bị gãy (H.9.46). Làm thế nào để xác (ảnh 1)

Xem đáp án » 12/07/2024 7,393

Câu 4:

b) Trên bản đồ, ba khu dân cư được quy hoạch tại ba điểm A, B, C không thẳng hàng. Hãy tìm trên bản đồ đó một điểm M cách đều A, B, C để quy hoạch một trường học.

Xem đáp án » 12/07/2024 6,171

Câu 5:

Gọi H là trực tâm của tam giác ABC không vuông. Tìm trực tâm của các tam giác HBC, HCA, HAB.

Xem đáp án » 12/07/2024 5,654

Câu 6:

a) Chứng minh rằng trong tam giác ABC cân tại A, đường trung trực của cạnh BC là đường cao và cũng là đường phân giác xuất phát từ đỉnh A của tam giác đó.

Xem đáp án » 12/07/2024 5,616
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay