Cho tam giác ABC. D là một điểm bất kì trên đoạn BC. Từ B, C kẻ các đường vuông góc BK, CN đến đường thẳng AD.
So sánh BK + CN với BC.
Cho tam giác ABC. D là một điểm bất kì trên đoạn BC. Từ B, C kẻ các đường vuông góc BK, CN đến đường thẳng AD.
So sánh BK + CN với BC.
Quảng cáo
Trả lời:

Từ (1) suy ra BK + CN < BD + CN. (2)
Trong tam giác vuông CND có CD là cạnh huyền nên CN < CD,
suy ra BD + CN < BD + CD. (3)
Từ (2) và (3) suy ra BK + CN < BD + CN < BD + CD = BC.
Do đó, BK + CN < BC. (4)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
M là một điểm nằm giữa B và C. Ta cần chứng minh AM < AB. Muốn vậy, ta xét các trường hợp sau:
Trường hợp 1: Nếu \(\widehat {AMB} = 90^\circ \), thì AM là đường vuông góc, còn AB là đường xiên kẻ từ A xuống BC theo định lí về đường vuông góc và đường xiên, ta có AM < AB.
Trường hợp 2: Nếu \[\widehat {AMB}\] là góc tù thì trong tam giác AMB, góc AMB lớn nhất nên AM < AB.
Trường hợp 3: Nếu \[\widehat {AMB}\] là góc nhọn thì góc AMC kề bù với nó nên \(\widehat {AMC}\) là góc tù.
Trong tam giác AMC, góc AMC lớn nhất. Do đó AM < AC = AB.Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.