Hãy giải thích: Nếu M là một điểm tùy ý nằm trên cạnh BC hoặc CD của hình vuông ABCD thì độ dài đoạn thẳng AM luôn lớn hơn hoặc bằng độ dài cạnh của hình vuông đó (H.9.15).
Hãy giải thích: Nếu M là một điểm tùy ý nằm trên cạnh BC hoặc CD của hình vuông ABCD thì độ dài đoạn thẳng AM luôn lớn hơn hoặc bằng độ dài cạnh của hình vuông đó (H.9.15).

Quảng cáo
Trả lời:
Khi M trùng với B (hoặc D) thì AM = a (AB = a) với a là độ dài cạnh hình vuông. Khi M khác B, M thuộc cạnh BC thì tam giác ABM vuông tại B nên AM là cạnh huyền, do đó a = AB < AM. Tương tự, khi M khác D, M thuộc cạnh CD, ta có a = AD < AM.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì 2,5 + 3,4 < 6 nên bộ ba đoạn thẳng có độ dài 2,5 cm; 3,4 cm và 6 cm không thỏa mãn bất đẳng thức tam giác nên không phải là độ dài ba cạnh của một tam giác.
Lời giải
Tam giác cân đó phải có ba cạnh có độ dài 2 cm; 2 cm; 5 cm hoặc 2 cm; 5 cm; 5 cm.
Với bộ ba cạnh có độ dài 2 cm; 2 cm; 5 cm ta có 2 + 2 < 5, không thỏa mãn một bất đẳng thức tam giác nên đây không phải là độ dài ba cạnh của một tam giác.
Với bộ ba cạnh có độ dài 2 cm; 5 cm; 5 cm ta có 2 + 5 > 5 nên đây là độ dài ba cạnh của một tam giác. Ta dựng được tam giác cân có cạnh 2 cm; 5 cm; 5 cm, chu vi của tam giác này là 2 + 5 + 5 = 12 (cm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.