Biết hai cạnh của tam giác có độ dài a và b. Dựa vào bất đẳng thức tam giác, hãy giải thích tại sao chu vi của tam giác đó lớn hơn 2a và nhỏ hơn 2(a + b).
Biết hai cạnh của tam giác có độ dài a và b. Dựa vào bất đẳng thức tam giác, hãy giải thích tại sao chu vi của tam giác đó lớn hơn 2a và nhỏ hơn 2(a + b).
Câu hỏi trong đề: Giải VTH Toán 7 KNTT Luyện tập chung trang 70 có đáp án !!
Quảng cáo
Trả lời:
Giả sử độ dài cạnh thứ ba của tam giác là c.
Chu vi của tam giác là a + b + c.
Theo bất đẳng thức tam giác, ta có b + c > a nên b + c + a > a + a, tức là:
b + c + a > 2a.
Mặt khác, do c < a + b nên c + a + b < a + b + a + b, tức là:
c + a + b < 2(a + b).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì 2,5 + 3,4 < 6 nên bộ ba đoạn thẳng có độ dài 2,5 cm; 3,4 cm và 6 cm không thỏa mãn bất đẳng thức tam giác nên không phải là độ dài ba cạnh của một tam giác.
Lời giải
Khi M trùng với B (hoặc D) thì AM = a (AB = a) với a là độ dài cạnh hình vuông. Khi M khác B, M thuộc cạnh BC thì tam giác ABM vuông tại B nên AM là cạnh huyền, do đó a = AB < AM. Tương tự, khi M khác D, M thuộc cạnh CD, ta có a = AD < AM.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
