Câu hỏi:
04/10/2022 401
Chứng minh rằng:
Ngược lại, nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.
Chứng minh rằng:
Ngược lại, nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.
Quảng cáo
Trả lời:

BN, CP là hai đường trung tuyến của tam giác ABC, BN = CP. Ta sẽ chứng minh AB = AC.
Gọi G là trọng tâm của tam giác ABC.
Xét hai tam giác PGB và NGC, ta có:
PG = NG; BG = CG; \(\widehat {BGP} = \widehat {CGN}\) (đối đỉnh).
Vậy ∆PGB = ∆NGC (c.g.c), suy ra BP = NC.
Do đó AB = 2PB = 2NC = AC.
Vậy tam giác ABC cân tại A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có \(\widehat {IBC} = \frac{{\widehat B}}{2},\,\,\widehat {ICB} = \frac{{\widehat C}}{2}\), \[\widehat {BIC} = 180^\circ - \left( {\frac{{\widehat B}}{2} + \frac{{\widehat C}}{2}} \right)\],
mà \(\frac{{\widehat B}}{2} + \frac{{\widehat C}}{2} = \frac{{\widehat B + \widehat C}}{2} = \frac{{180^\circ - \widehat {BAC}}}{2} = \frac{{180^\circ - 120^\circ }}{2} = 30^\circ \).
Do đó \[\widehat {BIC}\] = 180° – 30° = 150°.
Lời giải

Xét hai tam giác vuông ABE và MBE, ta có:
BE cạnh chụng, \(\widehat {ABE} = \widehat {MBE}\) (BE là tia phân giác góc ABC).
Do đó ∆ABE = ∆MBE (cạnh huyền – góc nhọn).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.