Câu hỏi:
13/07/2024 521
Cho tam giác ABC vuông tại A có góc B bằng 60°. Tia phân giác của góc ABC cắt AC ở E. Kẻ EM vuông góc với BC (M ∈ BC).
Gọi I là giao điểm của BA và ME. Chứng minh IE > EM.
Cho tam giác ABC vuông tại A có góc B bằng 60°. Tia phân giác của góc ABC cắt AC ở E. Kẻ EM vuông góc với BC (M ∈ BC).
Gọi I là giao điểm của BA và ME. Chứng minh IE > EM.
Quảng cáo
Trả lời:

Ta có góc \(\widehat {EAI}\) kề bù với góc vuông \(\widehat {BAC}\) nên \(\widehat {EAI} = 90^\circ \).
Trong tam giác vuông AEI có cạnh IE là cạnh huyền nên IE > AE. (1)
Theo câu a) ∆ABE = ∆MBE nên AE = EM. (2)
Từ (1) và (2) suy ra IE > EM.Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có \(\widehat {IBC} = \frac{{\widehat B}}{2},\,\,\widehat {ICB} = \frac{{\widehat C}}{2}\), \[\widehat {BIC} = 180^\circ - \left( {\frac{{\widehat B}}{2} + \frac{{\widehat C}}{2}} \right)\],
mà \(\frac{{\widehat B}}{2} + \frac{{\widehat C}}{2} = \frac{{\widehat B + \widehat C}}{2} = \frac{{180^\circ - \widehat {BAC}}}{2} = \frac{{180^\circ - 120^\circ }}{2} = 30^\circ \).
Do đó \[\widehat {BIC}\] = 180° – 30° = 150°.
Lời giải

Xét hai tam giác vuông ABE và MBE, ta có:
BE cạnh chụng, \(\widehat {ABE} = \widehat {MBE}\) (BE là tia phân giác góc ABC).
Do đó ∆ABE = ∆MBE (cạnh huyền – góc nhọn).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.