Câu hỏi:
13/07/2024 7,894Cho tam giác ABC có đường phân giác AD, D nằm trên BC sao cho BD = 2DC. Trên đường thẳng AC, lấy điểm E sao cho C là trung điểm của AE (H.9.47). Chứng minh rằng tam giác ABE cân tại A.
Gợi ý. D là trọng tâm của tam giác ABE; tam giác này có đường phân giác AD đồng thời là đường trung tuyến.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
\[\Delta ABE\] có C là trung điểm của AE nên BC là đường trung tuyến của \[\Delta ABE\].
BC = BD + DC = 2DC + DC = 3DC.
Do đó DC = \[\frac{1}{3}\]BC, BD = \[\frac{2}{3}\]BC.
Trên đường trung tuyến BC có điểm D thỏa mãn BD = \[\frac{2}{3}\]BC nên D là trọng tâm của \[\Delta ABE\].
Do đó AD là đường trung tuyến của \[\Delta ABE\].
\[\Delta ABE\] có AD vừa là đường trung tuyến, vừa là đường phân giác nên \[\Delta ABE\] cân tại A.
Đã bán 375
Đã bán 230
Đã bán 287
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC và tia đối của tia CB theo thứ tự lấy hai điểm D và E sao cho BD = CE.
Chứng minh ∆ADE cân.
Câu 2:
Gọi AI và AM lần lượt là đường cao và đường trung tuyến xuất phát từ đỉnh A của tam giác ABC. Chứng minh rằng:
AM < \[\frac{1}{2}\](AB + AC).
Câu 3:
Gọi AI và AM lần lượt là đường cao và đường trung tuyến xuất phát từ đỉnh A của tam giác ABC. Chứng minh rằng:
AI < \[\frac{1}{2}\](AB + AC);
Câu 4:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC và tia đối của tia CB theo thứ tự lấy hai điểm D và E sao cho BD = CE.
Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD, AE. Chứng minh: BH = CK.
Câu 5:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC và tia đối của tia CB theo thứ tự lấy hai điểm D và E sao cho BD = CE.
Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE và AM ⊥ DE.
Câu 6:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC và tia đối của tia CB theo thứ tự lấy hai điểm D và E sao cho BD = CE.
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi Giữa kì 2 Toán 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 01
Bộ 5 đề thi Giữa kì 2 Toán 7 Cánh diều cấu trúc mới có đáp án - Đề 01
12 Bài tập Một số bài toán thực tế liên quan đại lượng tỉ lệ thuận (có lời giải)
12 Bài tập Một số bài toán thực tế liên quan đại lượng tỉ lệ nghịch (có lời giải)
Bộ 5 đề thi Giữa kì 2 Toán 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 02
Bộ 5 đề thi Giữa kì 2 Toán 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 04
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận