Câu hỏi:

13/07/2024 1,998

Cho tam giác ABC cân tại A. Trên tia đối của tia BC và tia đối của tia CB theo thứ tự lấy hai điểm D và E sao cho BD = CE.

Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE và AM DE.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE và AM ⊥ DE.  (ảnh 1)

Ta có: DM = DB + BM, EM = EC + CM, mà BD = CE (gt), BM = CM (M là trung điểm của BC), suy ra DM = EM.

Xét ∆AMD và ∆AME có:

          AM chung,

          AD = AE (chứng minh trên),

          DM = EM (chứng minh trên).

Do đó ∆AMD = ∆AME (c.c.c), suy ra \(\widehat {DAM} = \widehat {EAM}\)\(\widehat {DMA} = \widehat {EMA}\), suy ra AM là phân giác của góc DAE.

Mặt khác do \(\widehat {DMA}\)\(\widehat {EMA}\) là hai góc bù nhau nên \(\widehat {DMA} = \widehat {EMA}\) = 90° hay AM DE.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[\Delta ABE\] có C là trung điểm của AE nên BC là đường trung tuyến của \[\Delta ABE\].

BC = BD + DC = 2DC + DC = 3DC.

Do đó DC = \[\frac{1}{3}\]BC, BD = \[\frac{2}{3}\]BC.

Trên đường trung tuyến BC có điểm D thỏa mãn BD = \[\frac{2}{3}\]BC nên D là trọng tâm của \[\Delta ABE\].

Do đó AD là đường trung tuyến của \[\Delta ABE\].

\[\Delta ABE\] có AD vừa là đường trung tuyến, vừa là đường phân giác nên \[\Delta ABE\] cân tại A.

Lời giải

Cho tam giác ABC cân tại A. Chứng minh tam giác ADE cân.  (ảnh 1)

Do ∆ABC cân tại A nên \(\widehat {ABC} = \widehat {ACB}\) suy ra \(\widehat {ABD} = \widehat {ACE}\) (cùng bù với góc \(\widehat {ABC}\), \(\widehat {ACB}\)).

Xét ∆ABD và ∆ACE có:

AB = AC (do tam giác ABC cân tại A)

\(\widehat {ABD} = \widehat {ACE}\) (chứng minh trên),

BD = CE (theo giả thiết).

Suy ra ∆ABD = ∆ACE (c.g.c), do đó AD = AE (hai cạnh tương ứng), suy ra tam giác ADE cân tại A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay